Jump to content

User:Akanksh: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Akanksh (talk | contribs)
No edit summary
Akanksh (talk | contribs)
No edit summary
Line 12: Line 12:
<math>Ai(x) = (1/\pi) \int_0^\infty \cos((1/3) t^3 + xt) dt</math></br>
<math>Ai(x) = (1/\pi) \int_0^\infty \cos((1/3) t^3 + xt) dt</math></br>
<math>Bi(x) = (1/\pi) \int_0^\infty (e^(-(1/3) t^3) + \sin((1/3) t^3 + xt)) dt</math>
<math>Bi(x) = (1/\pi) \int_0^\infty (e^(-(1/3) t^3) + \sin((1/3) t^3 + xt)) dt</math>

== Clausen Functions ==

<math>Cl_2(x) = - \int_0^x dt \log(2 \sin(t/2))</math>

== Normalized Hydrogenic Bound States ==
<math>R_n := 2 (Z^{3/2}/n^2) \sqrt{(n-l-1)!/(n+l)!} \exp(-Z r/n) (2Zr/n)^l L^{2l+1}_{n-l-1}(2Zr/n)</math></br>
Where:<math>L^k_n(x) = (-1)^k (d^k/dx^k) L_(n+k)(x)</math>

== Legendre Forms ==


<math> F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t)))</math>
<math> E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t)))</math>
<math> \Pi(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t))</math>

== Carlson Forms ==


<math>RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1)</math>
<math> RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2)</math>
<math> RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2)</math>
<math> RJ(x,y,z,p) = 3/2 \int_0^\infty dt(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)</math>

== Gamma Functions ==

<math> \Gamma(x) = \int_0^\infty dt t^{x-1} \exp(-t)</math>
== Psi (Digamma) Function ==

<math> \psi^{(n)}(x) = (d/dx)^n \psi(x) = (d/dx)^{n+1} \log(\Gamma(x)) </math>

Revision as of 19:35, 30 June 2008

Akanksh Vashisth

Complete Fermi Dirac Integrals

Incomplete Fermi Dirac Integrals

Airy Functions and Derivatives


Clausen Functions

Normalized Hydrogenic Bound States


Where:

Legendre Forms

Carlson Forms

Gamma Functions

Psi (Digamma) Function