Line 6:
Line 6:
===Divergence===
===Divergence===
{{main|divergence}}
{{main|Divergence }}
====Divergence of a vector field====
For a vector field <math> \mathbf{v} </math>, divergence is generally written as
For a vector field <math> \mathbf{v} </math>, divergence is generally written as
:<math>\operatorname{div}(\mathbf{v}) = \nabla \cdot \mathbf{v}</math>
:<math>\operatorname{div}(\mathbf{v}) = \nabla \cdot \mathbf{v}</math>
⚫
and is a scalar field. For a second order [[tensor]] <math> \stackrel{\mathbf{\mathfrak{T}}}{} </math>, divergence is generally written as
and is a scalar field.
====Divergence of a tensor====
⚫
For a second order [[tensor]] <math> \stackrel{\mathbf{\mathfrak{T}}}{} </math>, divergence is generally written as
:<math>\operatorname{div}(\mathbf{\mathfrak{T}}) = \nabla \cdot \mathbf{\mathfrak{T}}</math>
:<math>\operatorname{div}(\mathbf{\mathfrak{T}}) = \nabla \cdot \mathbf{\mathfrak{T}}</math>
The following identities are important in vector calculus :
Single operators (summary)
This section explicitly lists what some symbols mean for clarity.
Divergence
For a vector field
v
{\displaystyle \mathbf {v} }
, divergence is generally written as
div
(
v
)
=
∇
⋅
v
{\displaystyle \operatorname {div} (\mathbf {v} )=\nabla \cdot \mathbf {v} }
and is a scalar field. For a second order tensor
T
{\displaystyle {\stackrel {\mathbf {\mathfrak {T}} }{}}}
, divergence is generally written as
div
(
T
)
=
∇
⋅
T
{\displaystyle \operatorname {div} (\mathbf {\mathfrak {T}} )=\nabla \cdot \mathbf {\mathfrak {T}} }
and is a vector. More generally speaking, the divergence of a tensor of order n is a contraction to a tensor of order n-1 , and may be found by decomposing the tensor into a sum of outer products, thereby allowing the use of the identity,
∇
⋅
(
a
⊗
T
^
)
=
T
^
(
∇
⋅
a
)
+
(
a
⋅
∇
)
T
^
{\displaystyle \nabla \cdot (\mathbf {a} \otimes {\hat {\mathbf {\mathfrak {T}} }})={\hat {\mathbf {\mathfrak {T}} }}(\nabla \cdot \mathbf {a} )+(\mathbf {a} \cdot \nabla ){\hat {\mathbf {\mathfrak {T}} }}}
where
a
⋅
∇
{\displaystyle \mathbf {a} \cdot \nabla }
is the directional derivative in the direction of
a
{\displaystyle \mathbf {a} }
multiplied by its magnitude. Specifically, if it is the outer product of two vectors, then
∇
⋅
(
a
b
T
)
=
b
(
∇
⋅
a
)
+
(
a
⋅
∇
)
b
{\displaystyle \nabla \cdot (\mathbf {a} \mathbf {b^{T}} )=\mathbf {b} (\nabla \cdot \mathbf {a} )+(\mathbf {a} \cdot \nabla )\mathbf {b} }
Curl
For a vector field
v
{\displaystyle \mathbf {v} }
, curl is generally written as:
curl
(
v
)
=
∇
×
v
{\displaystyle \operatorname {curl} (\mathbf {v} )=\nabla \times \mathbf {v} }
and is a vector field.
Gradient
Gradient of a vector field
For a vector field
v
{\displaystyle \mathbf {v} }
, gradient is generally written as:
grad
(
v
)
=
∇
v
{\displaystyle \operatorname {grad} (\mathbf {v} )=\nabla \mathbf {v} }
and is a second-order tensor .
Gradient of a scalar field
For a scalar field,
ψ
{\displaystyle \psi }
, the gradient is generally written as
grad
(
ψ
)
=
∇
ψ
{\displaystyle \operatorname {grad} (\psi )=\nabla \psi }
and is a vector field.
Combinations of multiple operators
Curl of the gradient
The curl of the gradient of any scalar field
ϕ
{\displaystyle \ \phi }
is always the zero vector :
∇
×
(
∇
ϕ
)
=
0
→
{\displaystyle \nabla \times (\nabla \phi )={\vec {0}}}
One way to establish this identity (and most of the others listed in this article) is to use three-dimensional Cartesian coordinates . According to the article on curl ,
∇
×
∇
ϕ
=
|
i
j
k
∂
x
∂
y
∂
z
∂
x
ϕ
∂
y
ϕ
∂
z
ϕ
|
,
{\displaystyle \nabla \times \nabla \phi ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\\\{\partial _{x}}&{\partial _{y}}&{\partial _{z}}\\\\\partial _{x}\phi &\partial _{y}\phi &\partial _{z}\phi \end{vmatrix}}\ ,}
where the right hand side is a determinant, and i , j , k are unit vectors pointing in the positive axes directions, and ∂x = ∂ / ∂ x etc . For example, the x -component of the above equation is:
i
(
∂
y
∂
z
−
∂
z
∂
y
)
ϕ
=
0
→
,
{\displaystyle \mathbf {i} \left(\partial _{y}\partial _{z}-\partial _{z}\partial _{y}\right)\phi ={\vec {0}}\ ,}
where the left-hand side equals zero due to the equality of mixed partial derivatives .
Divergence of the curl
The divergence of the curl of any vector field A is always zero:
∇
⋅
(
∇
×
A
)
=
0
{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}
Divergence of the gradient
The Laplacian of a scalar field is defined as the divergence of the gradient:
∇
⋅
(
∇
ψ
)
=
∇
2
ψ
{\displaystyle \nabla \cdot (\nabla \psi )=\nabla ^{2}\psi }
Note that the result is a scalar quantity.
Curl of the curl
∇
×
(
∇
×
A
)
=
∇
(
∇
⋅
A
)
−
∇
2
A
{\displaystyle \nabla \times \left(\nabla \times \mathbf {A} \right)=\nabla (\nabla \cdot \mathbf {A} )-\nabla ^{2}\mathbf {A} }
Here, ∇2 is the vector Laplacian operating on the vector field A .
Properties
Distributive property
∇
⋅
(
A
+
B
)
=
∇
⋅
A
+
∇
⋅
B
{\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} }
∇
×
(
A
+
B
)
=
∇
×
A
+
∇
×
B
{\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} }
Vector dot product
∇
(
A
⋅
B
)
=
(
A
⋅
∇
)
B
+
(
B
⋅
∇
)
A
+
A
×
(
∇
×
B
)
+
B
×
(
∇
×
A
)
{\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=(\mathbf {A} \cdot \nabla )\mathbf {B} +(\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} )}
In simpler form, using Feynman subscript notation:
∇
(
A
⋅
B
)
=
∇
A
(
A
⋅
B
)
+
∇
B
(
A
⋅
B
)
,
{\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=\nabla _{A}(\mathbf {A} \cdot \mathbf {B} )+\nabla _{B}(\mathbf {A} \cdot \mathbf {B} )\ ,}
where the notation ∇ A means the subscripted gradient operates on only the factor A .[ 1] [ 2]
A less general but similar idea is used in geometric algebra where the so-called Hestenes overdot notation is employed.[ 3] The above identity is then expressed as:
∇
(
A
⋅
B
)
=
∇
˙
(
A
˙
⋅
B
)
+
∇
˙
(
A
⋅
B
˙
)
,
{\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )={\dot {\nabla }}({\dot {\mathbf {A} }}\cdot \mathbf {B} )+{\dot {\nabla }}(\mathbf {A} \cdot {\dot {\mathbf {B} }})\ ,}
where overdots define the scope of the vector derivative. In the first term it is only the first (dotted) factor that is differentiated, while the second is held constant. Likewise, in the second term it is the second (dotted) factor that is differentiated, and the first is held constant.
As a special case, when A = B :
1
2
∇
(
A
⋅
A
)
=
A
×
(
∇
×
A
)
+
(
A
⋅
∇
)
A
.
{\displaystyle {\frac {1}{2}}\nabla \left(\mathbf {A} \cdot \mathbf {A} \right)=\mathbf {A} \times (\nabla \times \mathbf {A} )+(\mathbf {A} \cdot \nabla )\mathbf {A} .}
Vector cross product
∇
⋅
(
A
×
B
)
=
B
⋅
(
∇
×
A
)
−
A
⋅
(
∇
×
B
)
{\displaystyle \nabla \cdot (\mathbf {A} \times \mathbf {B} )=\mathbf {B} \cdot (\nabla \times \mathbf {A} )-\mathbf {A} \cdot (\nabla \times \mathbf {B} )}
∇
×
(
A
×
B
)
=
A
(
∇
⋅
B
)
−
B
(
∇
⋅
A
)
+
(
B
⋅
∇
)
A
−
(
A
⋅
∇
)
B
{\displaystyle \nabla \times (\mathbf {A} \times \mathbf {B} )=\mathbf {A} (\nabla \cdot \mathbf {B} )-\mathbf {B} (\nabla \cdot \mathbf {A} )+(\mathbf {B} \cdot \nabla )\mathbf {A} -(\mathbf {A} \cdot \nabla )\mathbf {B} }
A
×
(
∇
×
B
)
=
∇
B
(
A
⋅
B
)
−
(
A
⋅
∇
)
B
,
{\displaystyle \mathbf {A\ \times } \left(\mathbf {\nabla \times B} \right)=\nabla _{B}\left(\mathbf {A\cdot B} \right)-\left(\mathbf {A\cdot \nabla } \right)\mathbf {B} \ ,}
where the Feynman subscript notation ∇ B means the subscripted gradient operates on only the factor B .[ 1] [ 2]
In overdot notation, explained above:[ 3]
A
×
(
∇
×
B
)
=
∇
˙
(
A
⋅
B
˙
)
−
(
A
⋅
∇
)
B
.
{\displaystyle \mathbf {A\ \times } \left(\mathbf {\nabla \times B} \right)={\dot {\nabla }}\left(\mathbf {A\cdot } {\dot {\mathbf {B} }}\right)-\left(\mathbf {A\cdot \nabla } \right)\mathbf {B} \ .}
[ 4]
Product of a scalar and a vector
∇
⋅
(
ψ
A
)
=
A
⋅
∇
ψ
+
ψ
∇
⋅
A
{\displaystyle \nabla \cdot (\psi \mathbf {A} )=\mathbf {A} \cdot \nabla \psi +\psi \nabla \cdot \mathbf {A} }
∇
×
(
ψ
A
)
=
ψ
∇
×
A
+
∇
ψ
×
A
{\displaystyle \nabla \times (\psi \mathbf {A} )=\psi \nabla \times \mathbf {A} +\nabla \psi \times \mathbf {A} }
Product rule for the gradient
The gradient of the product of two scalar fields
ψ
{\displaystyle \psi }
and
ϕ
{\displaystyle \phi }
follows the same form as the product rule in single variable calculus .
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
{\displaystyle \nabla (\psi \,\phi )=\phi \,\nabla \psi +\psi \,\nabla \phi }
Summary of all identities
Addition and multiplication
A
+
B
=
B
+
A
{\displaystyle \mathbf {A} +\mathbf {B} =\mathbf {B} +\mathbf {A} }
A
⋅
B
=
B
⋅
A
{\displaystyle \mathbf {A} \cdot \mathbf {B} =\mathbf {B} \cdot \mathbf {A} }
A
×
B
=
−
B
×
A
{\displaystyle \mathbf {A} \times \mathbf {B} =\mathbf {-B} \times \mathbf {A} }
(
A
+
B
)
⋅
C
=
A
⋅
C
+
B
⋅
C
{\displaystyle \left(\mathbf {A} +\mathbf {B} \right)\cdot \mathbf {C} =\mathbf {A} \cdot \mathbf {C} +\mathbf {B} \cdot \mathbf {C} }
(
A
+
B
)
×
C
=
A
×
C
+
B
×
C
{\displaystyle \left(\mathbf {A} +\mathbf {B} \right)\times \mathbf {C} =\mathbf {A} \times \mathbf {C} +\mathbf {B} \times \mathbf {C} }
A
⋅
(
B
×
C
)
=
B
⋅
(
C
×
A
)
=
C
⋅
(
A
×
B
)
{\displaystyle \mathbf {A} \cdot \left(\mathbf {B} \times \mathbf {C} \right)=\mathbf {B} \cdot \left(\mathbf {C} \times \mathbf {A} \right)=\mathbf {C} \cdot \left(\mathbf {A} \times \mathbf {B} \right)}
(scalar triple product )
A
×
(
B
×
C
)
=
(
A
⋅
C
)
B
−
(
A
⋅
B
)
C
{\displaystyle \mathbf {A\times } \left(\mathbf {B} \times \mathbf {C} \right)=\left(\mathbf {A} \cdot \mathbf {C} \right)\mathbf {B} -\left(\mathbf {A} \cdot \mathbf {B} \right)\mathbf {C} }
(vector triple product )
Differentiation
DCG chart: A simple chart depicting all rules pertaining to second derivatives. D, C, G, L and CC stand for divergence, curl, gradient, Laplacian and curl of curl, respectively. Arrows indicate existence of second derivatives. Blue circle in the middle represents curl of curl, whereas the other two red circles(dashed) mean that DD and GG do not exist.
Gradient
∇
(
ψ
+
ϕ
)
=
∇
ψ
+
∇
ϕ
{\displaystyle \nabla (\psi +\phi )=\nabla \psi +\nabla \phi }
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
{\displaystyle \nabla (\psi \,\phi )=\phi \,\nabla \psi +\psi \,\nabla \phi }
∇
(
A
⋅
B
)
=
(
A
⋅
∇
)
B
+
(
B
⋅
∇
)
A
+
A
×
(
∇
×
B
)
+
B
×
(
∇
×
A
)
{\displaystyle \nabla \left(\mathbf {A} \cdot \mathbf {B} \right)=\left(\mathbf {A} \cdot \mathbf {\nabla } \right)\mathbf {B} +\left(\mathbf {B} \cdot \mathbf {\nabla } \right)\mathbf {A} +\mathbf {A} \times \left(\nabla \times \mathbf {B} \right)+\mathbf {B} \times \left(\nabla \times \mathbf {A} \right)}
Divergence
∇
⋅
(
A
+
B
)
=
∇
⋅
A
+
∇
⋅
B
{\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} }
∇
⋅
(
ψ
A
)
=
ψ
∇
⋅
A
+
A
⋅
∇
ψ
{\displaystyle \nabla \cdot \left(\psi \mathbf {A} \right)=\psi \nabla \cdot \mathbf {A} +\mathbf {A} \cdot \nabla \psi }
∇
⋅
(
A
×
B
)
=
B
⋅
(
∇
×
A
)
−
A
⋅
(
∇
×
B
)
{\displaystyle \nabla \cdot \left(\mathbf {A} \times \mathbf {B} \right)=\mathbf {B} \cdot (\nabla \times \mathbf {A} )-\mathbf {A} \cdot (\nabla \times \mathbf {B} )}
Curl
∇
×
(
A
+
B
)
=
∇
×
A
+
∇
×
B
{\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} }
∇
×
(
ψ
A
)
=
ψ
∇
×
A
−
A
×
∇
ψ
{\displaystyle \nabla \times \left(\psi \mathbf {A} \right)=\psi \nabla \times \mathbf {A} -\mathbf {A} \times \nabla \psi }
∇
×
(
A
×
B
)
=
A
(
∇
⋅
B
)
−
B
(
∇
⋅
A
)
+
(
B
⋅
∇
)
A
−
(
A
⋅
∇
)
B
{\displaystyle \nabla \times \left(\mathbf {A} \times \mathbf {B} \right)=\mathbf {A} \left(\nabla \cdot \mathbf {B} \right)-\mathbf {B} \left(\nabla \cdot \mathbf {A} \right)+\left(\mathbf {B} \cdot \nabla \right)\mathbf {A} -\left(\mathbf {A} \cdot \nabla \right)\mathbf {B} }
Second derivatives
∇
⋅
(
∇
×
A
)
=
0
{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}
∇
×
(
∇
ψ
)
=
0
{\displaystyle \nabla \times (\nabla \psi )=0}
∇
⋅
(
∇
ψ
)
=
∇
2
ψ
{\displaystyle \nabla \cdot (\nabla \psi )=\nabla ^{2}\psi }
(scalar Laplacian )
∇
(
∇
⋅
A
)
−
∇
×
∇
×
A
=
∇
2
A
{\displaystyle \nabla \left(\nabla \cdot \mathbf {A} \right)-\nabla \times \nabla \times \mathbf {A} =\nabla ^{2}\mathbf {A} }
(vector Laplacian )
ψ
∇
2
ϕ
−
ϕ
∇
2
ψ
=
∇
⋅
(
ψ
∇
ϕ
−
ϕ
∇
ψ
)
{\displaystyle \psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi =\nabla \cdot \left(\psi \nabla \phi -\phi \nabla \psi \right)}
Integration
∬
S
⊂
⊃
A
⋅
d
s
=
∭
V
(
∇
⋅
A
)
d
v
{\displaystyle \iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset \mathbf {A} \cdot d\mathbf {s} =\iiint \limits _{V}\left(\nabla \cdot \mathbf {A} \right)dv}
(Divergence theorem )
∬
S
⊂
⊃
ψ
d
s
=
∭
V
∇
ψ
d
v
{\displaystyle \iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset {\psi }d\mathbf {s} =\iiint \limits _{V}\nabla \psi \,dv}
∬
S
⊂
⊃
(
n
^
×
A
)
d
s
=
∭
V
(
∇
×
A
)
d
v
{\displaystyle \iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset \left({\hat {\mathbf {n} }}\times \mathbf {A} \right)ds=\iiint \limits _{V}\left(\nabla \times \mathbf {A} \right)dv}
∭
V
(
ψ
∇
2
φ
+
∇
φ
⋅
∇
ψ
)
d
v
=
∬
S
⊂
⊃
ψ
(
∇
φ
⋅
n
^
)
d
s
{\displaystyle \iiint \limits _{V}\left(\psi \nabla ^{2}\varphi +\nabla \varphi \cdot \nabla \psi \right)dv=\iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset \psi \left(\nabla \varphi \cdot {\hat {\mathbf {n} }}\right)ds}
(Green's first identity )
∭
V
(
ψ
∇
2
φ
−
φ
∇
2
ψ
)
d
v
=
∬
S
⊂
⊃
[
(
ψ
∇
φ
−
φ
∇
ψ
)
⋅
n
^
]
d
s
=
∬
S
⊂
⊃
[
ψ
∂
φ
∂
n
−
φ
∂
ψ
∂
n
]
d
s
{\displaystyle \iiint \limits _{V}\left(\psi \nabla ^{2}\varphi -\varphi \nabla ^{2}\psi \right)dv=\iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset \left[\left(\psi \nabla \varphi -\varphi \nabla \psi \right)\cdot {\hat {\mathbf {n} }}\right]ds=\iint \limits _{S}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset \!\supset \left[\psi {\frac {\partial \varphi }{\partial n}}-\varphi {\frac {\partial \psi }{\partial n}}\right]ds}
(Green's second identity )
∮
C
A
⋅
d
l
=
∬
S
(
∇
×
A
)
⋅
d
s
{\displaystyle \oint \limits _{C}\mathbf {A} \cdot d\mathbf {l} =\iint \limits _{S}\left(\nabla \times \mathbf {A} \right)\cdot d\mathbf {s} }
(Stokes' theorem )
∮
C
ψ
d
l
=
∬
S
(
n
^
×
∇
ψ
)
d
s
{\displaystyle \oint \limits _{C}\psi d\mathbf {l} =\iint \limits _{S}\left({\hat {\mathbf {n} }}\times \nabla \psi \right)ds}
See also
Notes and references
^ a b Feynman, R. P.; Leighton, R. B.; Sands, M. (1964). The Feynman Lecture on Physics . Addison-Wesley. Vol II, p. 27–4. ISBN 0805390499 .
^ a b Kholmetskii, A. L.; Missevitch, O. V. (2005). "The Faraday induction law in relativity theory". p. 4. arXiv :physics/0504223 .
^ a b Doran, C.; Lasenby, A. (2003). Geometric algebra for physicists . Cambridge University Press. p. 169. ISBN 978-0-521-71595-9 .
^ Adams, Robert A.; Essex, Christopher (2008). Calculus: Several Variables (7th ed.). Toronto: Pearson Canada. p. 897. ISBN 0201798026 .
Further reading
Balanis, Constantine A. Advanced Engineering Electromagnetics . ISBN 0471621943 .
Schey, H. M. (1997). Div Grad Curl and all that: An informal text on vector calculus . W. W. Norton & Company. ISBN 0-393-96997-5 .
Griffiths, David J. (1999). Introduction to Electrodynamics . Prentice Hall. ISBN 0-13-805326-X .