Jump to content

Talk:Signaling game: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
m moved Talk:Signaling games to Talk:Signaling game: per WP:NC; the singular form is preferred for article titles in most cases
Line 7: Line 7:
One point: I am not sure the message/action wording is the best: it seems to imply costless signalling (that different messages are equally costly).
One point: I am not sure the message/action wording is the best: it seems to imply costless signalling (that different messages are equally costly).
[[User:CSMR|CSMR]] 03:46, 21 November 2005 (UTC)
[[User:CSMR|CSMR]] 03:46, 21 November 2005 (UTC)

I think the formal section is still wrong for the following reasons:

* Requirement 2 states that the receiver has to take action a^*(m) that maximises \sum_{t_i} \mu(t_i|m)U_R(t_i,m,a). But a^*(m) is defined as a probability distribution over the set of messages A (in my opinion this choice of notation is not felicitious). It does not make sense to say that a probability distribution maximises the above sum. It should at least be switched to the following: using the notation a^*(m)[a_j] standing for the probability for the receiver to play a_j given he has received message m<, For all m, probabilistic strategy a^*(m) for the receiver has to be a best response to m, i.e., has to maximises \sum_{t_i} \sum_{a_j} \mu(t_i|m) a^*(m)[a_j] U_R(t_j,m,a_i). Now this is feasible only if probabilistic strategy a^*(m) assignes non-zero probability to actions a that maximises \sum_{t_i} \mu(t_i|m)U_R(t_i,m,a) which is the formula has it appears now in the section. So I think there is a global confusion between a^*(m) seen has a probabilistic strategy on the one hand, and has a '''pure''' best response on the other hand, induced by the choice of notation.

* Notation U_S (t, m,a^*(m)) is undefined in requirement 3. My guess is that it means \sum_{a_i} a^*(m)[a_i] U_S(t, m,a_i). But once again, if m^* stands for a '''probablistic''' strategy, then this does not make sense, and it should be said instead that each m in the support of m^*(t) has to maximise the previous sum.

* Last and most important point I think; the Bayes formula exhibited in requirement 4 does not make sense at all. Assuming the undefined notation p(t_j) refers to the prior probability of the sender to be of type t_j, then \sum_{t_i} p(t_i) = 1 and p(t)/\sum_{t_i} p(t_i) = p(t) which do not make sense for \mu(t|m). The priors should be revised coherently with the belief of the receiver towards the sender's strategy, which in equilibrium is assumed to be m^*. Hence application of the Bayes formula should go as follows: For each message m_i ''' if there is a t_j such that m^*(t_j)[m_i] ≠ 0 ''' then \mu(t_k|m_i) = p(t_k)m^*(t_k)[m_i]/\sum_{t_j} p(t_j)m^*(t_j)[m_i]


== Where is Zahavi? ==
== Where is Zahavi? ==

Revision as of 16:52, 14 June 2013

Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconGame theory Start‑class High‑importance
WikiProject iconThis article is part of WikiProject Game theory, an attempt to improve, grow, and standardize Wikipedia's articles related to Game theory. We need your help!
Join in | Fix a red link | Add content | Weigh in
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
HighThis article has been rated as High-importance on the importance scale.

formal section corrected

I corrected the formal section on equilibrium which was badly done. (The dependence of the receiver's action on the sender's was not expressed, leading to a wrong formalisation.) Some minor edits too. The section is not as clear as it could be, but at least not wrong now. I added the possibility of mixed strategies (necessary for equilibrium sometimes), and take credit for the joke about mixed messages!

One point: I am not sure the message/action wording is the best: it seems to imply costless signalling (that different messages are equally costly). CSMR 03:46, 21 November 2005 (UTC)[reply]

I think the formal section is still wrong for the following reasons:

  • Requirement 2 states that the receiver has to take action a^*(m) that maximises \sum_{t_i} \mu(t_i|m)U_R(t_i,m,a). But a^*(m) is defined as a probability distribution over the set of messages A (in my opinion this choice of notation is not felicitious). It does not make sense to say that a probability distribution maximises the above sum. It should at least be switched to the following: using the notation a^*(m)[a_j] standing for the probability for the receiver to play a_j given he has received message m<, For all m, probabilistic strategy a^*(m) for the receiver has to be a best response to m, i.e., has to maximises \sum_{t_i} \sum_{a_j} \mu(t_i|m) a^*(m)[a_j] U_R(t_j,m,a_i). Now this is feasible only if probabilistic strategy a^*(m) assignes non-zero probability to actions a that maximises \sum_{t_i} \mu(t_i|m)U_R(t_i,m,a) which is the formula has it appears now in the section. So I think there is a global confusion between a^*(m) seen has a probabilistic strategy on the one hand, and has a pure best response on the other hand, induced by the choice of notation.
  • Notation U_S (t, m,a^*(m)) is undefined in requirement 3. My guess is that it means \sum_{a_i} a^*(m)[a_i] U_S(t, m,a_i). But once again, if m^* stands for a probablistic strategy, then this does not make sense, and it should be said instead that each m in the support of m^*(t) has to maximise the previous sum.
  • Last and most important point I think; the Bayes formula exhibited in requirement 4 does not make sense at all. Assuming the undefined notation p(t_j) refers to the prior probability of the sender to be of type t_j, then \sum_{t_i} p(t_i) = 1 and p(t)/\sum_{t_i} p(t_i) = p(t) which do not make sense for \mu(t|m). The priors should be revised coherently with the belief of the receiver towards the sender's strategy, which in equilibrium is assumed to be m^*. Hence application of the Bayes formula should go as follows: For each message m_i if there is a t_j such that m^*(t_j)[m_i] ≠ 0 then \mu(t_k|m_i) = p(t_k)m^*(t_k)[m_i]/\sum_{t_j} p(t_j)m^*(t_j)[m_i]

Where is Zahavi?

As far as I know, according to Dawkins, A. Zahavi was the first to propose the handicap principle in regards to Birds of Paradise and Thompson's Gazelles. Even if future biologists have expanded upon the theory, Zahavi deserves initial credit for the ideas. (q.v. handicap principle)

If nobody objects, I will update the article accordingly. — MSchmahl 11:57, 25 December 2007 (UTC)[reply]

Yeah, sure, go ahead. Though, in way of some defence of the present state, the article is about signalling games in a fairly strict game theory sense, and I don't think Zahavi's work (as undeniably influential as it is) is as "on point" as Grafen's work. Grafen's work applies game formal game theory, and a signalling game to the problem, along the lines suggested by Zahavi. Cheers, Pete.Hurd (talk) 05:48, 26 December 2007 (UTC)[reply]


Spelling

Shouldn't we use either British English OR American English? Signalling vs. signaling etc.? —Preceding unsigned comment added by 132.231.54.1 (talk) 14:58, 10 February 2009 (UTC)[reply]

Yeah, the WP convention is to consistently apply whichever spelling was discernably used first in the history of the article. Judging from the title, I'd guess that it is US spelling that should be used throughout this article. Pete.Hurd (talk) 19:12, 10 February 2009 (UTC)[reply]