Jump to content

Separable extension: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
add paragraph to introduction
See also: add link
Line 83: Line 83:


==See also==
==See also==
*[[Purely inseparable extension]]
*[[Separable polynomial]]
*[[Separable polynomial]]
*[[Perfect field]]
*[[Perfect field]]

Revision as of 10:30, 31 July 2013

In the subfield of algebra named field theory, a separable extension is an algebraic field extension such that for every , the minimal polynomial of over F is a separable polynomial (i.e., has distinct roots).[1] Otherwise, the extension is called inseparable. There are other equivalent definitions of the notion of a separable algebraic extension, and these are outlined later in the article.

The importance of separable extensions lies in the fundamental role they play in Galois theory in finite characteristic. More specifically, a finite degree field extension is Galois if and only if it is both normal and separable.[2] Since algebraic extensions of fields of characteristic zero, and of finite fields, are separable, separability is not an obstacle in most applications of Galois theory.[3][4] For instance, every algebraic (in particular, finite degree) extension of the field of rational numbers is necessarily separable.

Despite the ubiquity of the class of separable extensions in mathematics, its extreme opposite, namely the class of purely inseparable extensions, also occurs quite naturally. An algebraic extension is a purely inseparable extension if and only if for every , the minimal polynomial of over F is not a separable polynomial (i.e., does not have distinct roots).[5] For a field F to possess a non-trivial purely inseparable extension, it must necessarily be an infinite field of prime characteristic (i.e. specifically, imperfect), since any algebraic extension of a perfect field is necessarily separable.[3]

The study of separable extensions in their own right has far-reaching consequences. For instance, consider the result: "If E is a field with the property that every nonconstant polynomial with coefficients in E has a root in E, then E is algebraically closed."[6] Despite its simplicity, it suggests a deeper conjecture: "If is an algebraic extension and if every nonconstant polynomial with coefficients in F has a root in E, is E algebraically closed?"[7] Although this conjecture is true, most of its known proofs depend on the theory of separable and purely inseparable extensions; for instance, in the case corresponding to the extension being separable, one known proof involves the use of the primitive element theorem in the context of Galois extensions.[6]

Informal discussion

The reader may wish to assume that, in what follows, F is the field of rational, real or complex numbers, unless otherwise stated.

An arbitrary polynomial f with coefficients in some field F is said to have distinct roots if and only if it has deg(f) roots in some extension field . For instance, the polynomial g(X)=X2+1 with real coefficients has precisely deg(g)=2 roots in the complex plane; namely the imaginary unit i, and its additive inverse −i, and hence does have distinct roots. On the other hand, the polynomial h(X)=(X−2)2 with real coefficients does not have distinct roots; only 2 can be a root of this polynomial in the complex plane and hence it has only one, and not deg(h)=2 roots.

To test if a polynomial has distinct roots, it is not necessary to consider explicitly any field extension nor to compute the roots: a polynomial has distinct roots if and only if the greatest common divisor of the polynomial and its derivative is a constant. For instance, the polynomial g(X)=X2+1 in the above paragraph, has 2X as derivative, and, over a field of characteristic different of 2, we have g(X) - (1/2 X) 2X = 1, which proves, by Bézout's identity, that the greatest common divisor is a constant. On the other hand, over a field where 2=0, the greatest common divisor is g, and we have g(X) = (X+1)2 has 1=-1 as double root. On the other hand, the polynomial h does not have distinct roots, whichever is the field of the coefficients, and indeed, h(X)=(X−2)2, its derivative is 2 (X-2) and divides it, and hence does have a factor of the form for ).

Although an arbitrary polynomial with rational or real coefficients may not have distinct roots, it is natural to ask at this stage whether or not there exists an irreducible polynomial with rational or real coefficients that does not have distinct roots. The polynomial h(X)=(X−2)2 does not have distinct roots but it is not irreducible as it has a non-trivial factor (X−2). In fact, it is true that there is no irreducible polynomial with rational or real coefficients that does not have distinct roots; in the language of field theory, every algebraic extension of or is separable and hence both of these fields are perfect.

Separable and inseparable polynomials

A polynomial f in F[X] is a separable polynomial if and only if every irreducible factor of f in F[X] has distinct roots.[8] The separability of a polynomial depends on the field in which its coefficients are considered to lie; for instance, if g is an inseparable polynomial in F[X], and one considers a splitting field, E, for g over F, g is necessarily separable in E[X] since an arbitrary irreducible factor of g in E[X] is linear and hence has distinct roots.[1] Despite this, a separable polynomial h in F[X] must necessarily be separable over every extension field of F.[9]

Let f in F[X] be an irreducible polynomial and f' its formal derivative. Then the following are equivalent conditions for f to be separable; that is, to have distinct roots:

  • If and , then does not divide f in E[X].[10]
  • There exists such that f has deg(f) roots in K.[10]
  • f and f' do not have a common root in any extension field of F.[11]
  • f' is not the zero polynomial.[12]

By the last condition above, if an irreducible polynomial does not have distinct roots, its derivative must be zero. Since the formal derivative of a positive degree polynomial can be zero only if the field has prime characteristic, for an irreducible polynomial to not have distinct roots its coefficients must lie in a field of prime characteristic. More generally, if an irreducible (non-zero) polynomial f in F[X] does not have distinct roots, not only must the characteristic of F be a (non-zero) prime number p, but also f(X)=g(Xp) for some irreducible polynomial g in F[X].[13] By repeated application of this property, it follows that in fact, for a non-negative integer n and some separable irreducible polynomial g in F[X] (where F is assumed to have prime characteristic p).[14]

By the property noted in the above paragraph, if f is an irreducible (non-zero) polynomial with coefficients in the field F of prime characteristic p, and does not have distinct roots, it is possible to write f(X)=g(Xp). Furthermore, if , and if the Frobenius endomorphism of F is an automorphism, g may be written as , and in particular, ; a contradiction of the irreducibility of f. Therefore, if F[X] possesses an inseparable irreducible (non-zero) polynomial, then the Frobenius endomorphism of F cannot be an automorphism (where F is assumed to have prime characteristic p).[15]

If K is a finite field of prime characteristic p, and if X is an indeterminant, then the field of rational functions over K, K(X), is necessarily imperfect. Furthermore, the polynomial f(Y)=YpX is inseparable.[1] (To see this, note that there is some extension field in which f has a root ; necessarily, in E. Therefore, working over E, (the final equality in the sequence follows from freshman's dream), and f does not have distinct roots.) More generally, if F is any field of (non-zero) prime characteristic for which the Frobenius endomorphism is not an automorphism, F possesses an inseparable algebraic extension.[16]

A field F is perfect if and only if all of its algebraic extensions are separable (in fact, all algebraic extensions of F are separable if and only if all finite degree extensions of F are separable). By the argument outlined in the above paragraphs, it follows that F is perfect if and only if F has characteristic zero, or F has (non-zero) prime characteristic p and the Frobenius endomorphism of F is an automorphism.

Properties

  • If is an algebraic field extension, and if are separable over F, then and are separable over F. In particular, the set of all elements in E separable over F forms a field.[17]
  • If is such that and are separable extensions, then is separable.[18] Conversely, if is a separable algebraic extension, and if L is any intermediate field, then and are separable extensions.[19]
  • If is a finite degree separable extension, then it has a primitive element; i.e., there exists with . This fact is also known as the primitive element theorem or Artin's theorem on primitive elements.

Separable extensions within algebraic extensions

Separable extensions occur quite naturally within arbitrary algebraic field extensions. More specifically, if is an algebraic extension and if , then S is the unique intermediate field that is separable over F and over which E is purely inseparable.[20] If is a finite degree extension, the degree [S : F] is referred to as the separable part of the degree of the extension (or the separable degree of E/F), and is often denoted by [E : F]sep or [E : F]s.[21] The inseparable degree of E/F is the quotient of the degree by the separable degree. When the characteristic of F is p > 0, it is a power of p.[22] Since the extension is separable if and only if , it follows that for separable extensions, [E : F]=[E : F]sep, and conversely. If is not separable (i.e., inseparable), then [E : F]sep is necessarily a non-trivial divisor of [E : F], and the quotient is necessarily a power of the characteristic of F.[21]

On the other hand, an arbitrary algebraic extension may not possess an intermediate extension K that is purely inseparable over F and over which E is separable (however, such an intermediate extension does exist when is a finite degree normal extension (in this case, K can be the fixed field of the Galois group of E over F)). If such an intermediate extension does exist, and if [E : F] is finite, then if S is defined as in the previous paragraph, [E : F]sep=[S : F]=[E : K].[23] One known proof of this result depends on the primitive element theorem, but there does exist a proof of this result independent of the primitive element theorem (both proofs use the fact that if is a purely inseparable extension, and if f in F[X] is a separable irreducible polynomial, then f remains irreducible in K[X][24]). The equality above ([E : F]sep=[S : F]=[E : K]) may be used to prove that if is such that [E : F] is finite, then [E : F]sep=[E : U]sep[U : F]sep.[25]

If F is any field, the separable closure Fsep of F is the field of all elements in an algebraic closure of F that are separable over F. This is the maximal Galois extension of F. By definition, F is perfect if and only if its separable and algebraic closures coincide (in particular, the notion of a separable closure is only interesting for imperfect fields).

The definition of separable non-algebraic extension fields

Although many important applications of the theory of separable extensions stem from the context of algebraic field extensions, there are important instances in mathematics where it is profitable to study (not necessarily algebraic) separable field extensions.

Let be a field extension and let p be the characteristic exponent of .[26] For any field extension L of k, we write (cf. Tensor product of fields.) Then F is said to be separable over if the following equivalent conditions are met:

  • and are linearly disjoint over
  • is reduced.
  • is reduced for all field extensions L of k.

(In other words, F is separable over k if F is a separable k-algebra.)

Suppose there is some field extension L of k such that is a domain. Then is separable over k if and only if the field of fractions of is separable over L.

An algebraic element of F is said to be separable over if its minimal polynomial is separable. If is an algebraic extension, then the following are equivalent.

  • F is separable over k.
  • F consists of elements that are separable over k.
  • Every subextension of F/k is separable.
  • Every finite subextension of F/k is separable.

If is finite extension, then the following are equivalent.

  • (i) F is separable over k.
  • (ii) where are separable over k.
  • (iii) In (ii), one can take
  • (iv) For some very large field , there are precisely k-isomorphisms from to .

In the above, (iii) is known as the primitive element theorem.

Fix the algebraic closure , and denote by the set of all elements of that are separable over k. is then separable algebraic over k and any separable algebraic subextension of is contained in ; it is called the separable closure of k (inside ). is then purely inseparable over . Put in another way, k is perfect if and only if .

Differential criteria

The separability can be studied with the aid of derivations and Kähler differentials. Let be a finitely generated field extension of a field . Then

where the equality holds if and only if F is separable over k.

In particular, if is an algebraic extension, then if and only if is separable.

Let be a basis of and . Then is separable algebraic over if and only if the matrix is invertible. In particular, when , above is called the separating transcendence basis.

See also

Notes

  1. ^ a b c Isaacs, p. 281
  2. ^ Isaacs, Theorem 18.13, p. 282
  3. ^ a b Isaacs, Theorem 18.11, p. 281
  4. ^ Isaacs, p. 293
  5. ^ Isaacs, p. 298
  6. ^ a b Isaacs, Theorem 19.22, p. 303
  7. ^ Isaacs, p. 269
  8. ^ Isaacs, p. 280
  9. ^ Isaacs, Lemma 18.10, p. 281
  10. ^ a b Isaacs, Lemma 18.7, p. 280
  11. ^ Isaacs, Theorem 19.4, p. 295
  12. ^ Isaacs, Corollary 19.5, p. 296
  13. ^ Isaacs, Corollary 19.6, p. 296
  14. ^ Isaacs, Corollary 19.9, p. 298
  15. ^ Isaacs, Theorem 19.7, p. 297
  16. ^ Isaacs, p. 299
  17. ^ Isaacs, Lemma 19.15, p. 300
  18. ^ Isaacs, Corollary 19.17, p. 301
  19. ^ Isaacs, Corollary 18.12, p. 281
  20. ^ Isaacs, Theorem 19.14, p. 300
  21. ^ a b Isaacs, p. 302
  22. ^ Lang 2002, Corollary V.6.2
  23. ^ Isaacs, Theorem 19.19, p. 302
  24. ^ Isaacs, Lemma 19.20, p. 302
  25. ^ Isaacs, Corollary 19.21, p. 303
  26. ^ The characteristic exponent of k is 1 if k has characteristic zero; otherwise, it is the characteristic of k.

References

  • Borel, A. Linear algebraic groups, 2nd ed.
  • P.M. Cohn (2003). Basic algebra
  • I. Martin Isaacs (1993). Algebra, a graduate course (1st ed.). Brooks/Cole Publishing Company. ISBN 0-534-19002-2.
  • M. Nagata (1985). Commutative field theory: new edition, Shokado. (Japanese) [1]
  • Silverman, Joseph (1993). The Arithmetic of Elliptic Curves. Springer. ISBN 0-387-96203-4.