Jump to content

Lie algebra bundle: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Ildeguz (talk | contribs)
No edit summary
Ildeguz (talk | contribs)
No edit summary
Line 1: Line 1:
[[Matematik]]te, bir '''zayıf Lie cebri demeti'''
In [[Mathematics]], a '''weak Lie algebra bundle'''


:<math> \xi=(\xi, p, X, \theta)\,</math>
:<math> \xi=(\xi, p, X, \theta)\,</math>


bir [[vektör demeti]] <math>\xi\,</math> bir ''X'' uzay tabanı üzerinde bir morfizmle beraber
is a [[vector bundle]] <math>\xi\,</math> over a base space ''X'' together with a morphism


:<math> \theta : \xi \otimes \xi \rightarrow \xi </math>
:<math> \theta : \xi \otimes \xi \rightarrow \xi </math>


which induces a [[Lie algebra]] structure on each fibre <math> \xi_x\, </math>.
Bu her lif <math> \xi_x\, </math> üzerindeki bir [[Lie cebiri]] yapısını uyarır.


A '''Lie algebra bundle''' <math> \xi=(\xi, p, X)\,</math> is a [[vector bundle]] in which
Bir '''Lie cebiri demeti''' <math> \xi=(\xi, p, X)\,</math> içindeki bir [[vektör demeti]] bunun her lifi bir Lie cebiridir ve ''X'' içindeki her ''x'' için , burada ''x'' içeren bir [[açık küme]] <math> U </math> dur, bir Lie cebiri ''L'' ve bir homomorfizm
each fibre is a Lie algebra and for every ''x'' in ''X'', there is an [[open set]] <math> U </math> containing ''x'', a Lie algebra ''L'' and a homeomorphism


:<math> \phi:U\times L\to p^{-1}(U)\,</math>
:<math> \phi:U\times L\to p^{-1}(U)\,</math>


such that
böylece


:<math> \phi_x:x\times L \rightarrow p^{-1}(x)\,</math>
:<math> \phi_x:x\times L \rightarrow p^{-1}(x)\,</math>


bir Lie cebiri izomorfizmidir.
is a Lie algebra isomorphism.


Any Lie algebra bundle is a weak Lie algebra bundle but the converse need not be true in general.
Herhangi Lie cebiri demeti bir zayıf Lie cebiri demetidir ama genel içinde tersi doğru olması gerekmez.

<math>\mathfrak{so}(3)\times\mathbb{R}</math> toplam uzayı düşünüldüğünde zayıf bir Lie cebiri demetinin bir örneği olarak bu bir sert Lie cebiri demeti değildir <math>\mathbb{R}</math> üzerinde gerçek hattır.Diyelimki [[So(3)#Lie algebra|<math>\mathfrak{so}(3)</math>]]ün Lie braketi [.,.] ifadesi ve gerçek parametre olarak onun deformesi:

:<math>X,Y\in\mathfrak{so}(3)</math> için


As an example of a weak Lie algebra bundle that is not a strong Lie algebra bundle, consider the total space <math>\mathfrak{so}(3)\times\mathbb{R}</math> over the real line <math>\mathbb{R}</math>. Let [.,.] denote the Lie bracket of [[So(3)#Lie algebra|<math>\mathfrak{so}(3)</math>]] and deform it by the real parameter as:
:<math>[X,Y]_x = x\cdot[X,Y]</math>
:<math>[X,Y]_x = x\cdot[X,Y]</math>
for <math>X,Y\in\mathfrak{so}(3)</math> and <math>x\in\mathbb{R}</math>.


[[Lie's third theorem]] states that every bundle of Lie algebras can locally be integrated to a bundle of Lie groups. However globally the total space might fail to be [[Hausdorff space|Hausdorff]].<ref>A. Weinstein, A.C. da Silva: ''Geometric models for noncommutative algebras, 1999 Berkley LNM, online readable at [http://math.berkeley.edu/~alanw/], in particular chapter 16.3.</ref>
ve <math>x\in\mathbb{R}</math> dir.

[[Lie'nin üçüncü teoremi]] durumunda bu Lie cebirinin her demeti Lie gruplarının bir demetine yerel entegre olabilir.Ancak küresel toplam uzay [[Hausdorff space|Hausdorff]] için başarısız olabilir.<ref>A. Weinstein, A.C. da Silva: ''Geometric models for noncommutative algebras, 1999 Berkley LNM, online readable at [http://math.berkeley.edu/~alanw/], in particular chapter 16.3.</ref>


==Kaynakça==
==References==
{{Refimprove|date=February 2010}}<references/>
{{Refimprove|date=February 2010}}<references/>
*A.Douady et M.Lazard, Espaces fibres en algebre de Lie et en groups, Invent. math., Vol. 1, 1966, pp.&nbsp;133–151
*A.Douady et M.Lazard, Espaces fibres en algebre de Lie et en groups, Invent. math., Vol. 1, 1966, pp.&nbsp;133–151
Line 43: Line 40:
*B.S.Kiranagi, G.Prema and C.Chidambara, Rigidity theorem for Lie algebra Bundles, Communications in Algebra 20 (6), 1992, pp.&nbsp;1549 – 1556.
*B.S.Kiranagi, G.Prema and C.Chidambara, Rigidity theorem for Lie algebra Bundles, Communications in Algebra 20 (6), 1992, pp.&nbsp;1549 – 1556.


==Ayrıca bakınız==
==See also==
*[[Cebir demeti]]
*[[Algebra bundle]]
*[[Eşlenik demeti]]
*[[Adjoint bundle]]


[[Category:Differential topology]]
[[Category:Differential topology]]

Revision as of 22:51, 26 January 2014

In Mathematics, a weak Lie algebra bundle

is a vector bundle over a base space X together with a morphism

which induces a Lie algebra structure on each fibre .

A Lie algebra bundle is a vector bundle in which each fibre is a Lie algebra and for every x in X, there is an open set containing x, a Lie algebra L and a homeomorphism

such that

is a Lie algebra isomorphism.

Any Lie algebra bundle is a weak Lie algebra bundle but the converse need not be true in general.

As an example of a weak Lie algebra bundle that is not a strong Lie algebra bundle, consider the total space over the real line . Let [.,.] denote the Lie bracket of and deform it by the real parameter as:

for and .

Lie's third theorem states that every bundle of Lie algebras can locally be integrated to a bundle of Lie groups. However globally the total space might fail to be Hausdorff.[1]

References

  1. ^ A. Weinstein, A.C. da Silva: Geometric models for noncommutative algebras, 1999 Berkley LNM, online readable at [1], in particular chapter 16.3.
  • A.Douady et M.Lazard, Espaces fibres en algebre de Lie et en groups, Invent. math., Vol. 1, 1966, pp. 133–151
  • B.S.Kiranagi, Lie Algebra bundles, Bull. Sci. Math., 2e serie, 102(1978), 57-62.
  • B.S.Kiranagi, Semi simple Lie algebra bundles, Bull. Math de la Sci. Math de la R.S.de Roumaine, 27 (75), 1983, 253-257.
  • B.S.Kiranagi and G.Prema, On complete reducibility of Module Bundles, Bull. Austral. Math Soc., 28 (1983), 401-409.
  • B.S.Kiranagi and G.Prema, Cohomology of Lie algebra bundles and its applications, Ind. J. Pure and Appli. Math. 16(7): 1985, 731/735.
  • B.S.Kiranagi and G.Prema, Lie algebra bundles defined by Jordan algebra bundles, Bull. Math. Soc.Sci.Math.Rep.Soc. Roum., Noun. Ser. 33 (81), 1989, 255-264.
  • B.S.Kiranagi and G.Prema, On complete reducibility of Bimodule bundles, Bull. Math. Soc. Sci.Math. Repose; Roum, Nouv.Ser. 33 (81), 1989, 249-255.
  • B.S.Kiranagi and G.Prema, A decomposition theorem of Lie algebra Bundles, Communications in Algebra 18 (6), 1990, 1869-1877 .
  • B.S.Kiranagi, G.Prema and C.Chidambara, Rigidity theorem for Lie algebra Bundles, Communications in Algebra 20 (6), 1992, pp. 1549 – 1556.

See also