Jump to content

Algebraic closure: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
move reference
No edit summary
Line 17: Line 17:
*The algebraic closure of the field of [[rational number]]s is the field of [[algebraic number]]s.
*The algebraic closure of the field of [[rational number]]s is the field of [[algebraic number]]s.


*There are many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g. the algebraic closure of '''Q'''(π).
*There are uncountably many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g. the algebraic closure of '''Q'''(π).


*For a [[finite field]] of [[prime number|prime]] power order ''q'', the algebraic closure is a [[countably infinite]] field that contains a copy of the field of order ''q''<sup>''n''</sup> for each positive [[integer]] ''n'' (and is in fact the union of these copies).<ref>{{citation | title=Infinite Algebraic Extensions of Finite Fields | volume=95 | series=Contemporary Mathematics | first1=Joel V. | last1=Brawley | first2=George E. | last2=Schnibben | publisher=[[American Mathematical Society]] | year=1989 | isbn=978-0-8218-5428-0 | contribution=2.2 The Algebraic Closure of a Finite Field | pages=22–23 | url=http://books.google.com/books?id=0HNfpAsMXhUC&pg=PA22 | zbl=0674.12009}}.</ref>
*For a [[finite field]] of [[prime number|prime]] power order ''q'', the algebraic closure is a [[countably infinite]] field that contains a copy of the field of order ''q''<sup>''n''</sup> for each positive [[integer]] ''n'' (and is in fact the union of these copies).<ref>{{citation | title=Infinite Algebraic Extensions of Finite Fields | volume=95 | series=Contemporary Mathematics | first1=Joel V. | last1=Brawley | first2=George E. | last2=Schnibben | publisher=[[American Mathematical Society]] | year=1989 | isbn=978-0-8218-5428-0 | contribution=2.2 The Algebraic Closure of a Finite Field | pages=22–23 | url=http://books.google.com/books?id=0HNfpAsMXhUC&pg=PA22 | zbl=0674.12009}}.</ref>

Revision as of 02:56, 12 September 2014

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

Using Zorn's lemma, it can be shown that every field has an algebraic closure,[1][2][3] and that the algebraic closure of a field K is unique up to an isomorphism that fixes every member of K. Because of this essential uniqueness, we often speak of the algebraic closure of K, rather than an algebraic closure of K.

The algebraic closure of a field K can be thought of as the largest algebraic extension of K. To see this, note that if L is any algebraic extension of K, then the algebraic closure of L is also an algebraic closure of K, and so L is contained within the algebraic closure of K. The algebraic closure of K is also the smallest algebraically closed field containing K, because if M is any algebraically closed field containing K, then the elements of M that are algebraic over K form an algebraic closure of K.

The algebraic closure of a field K has the same cardinality as K if K is infinite, and is countably infinite if K is finite.[3]

Examples

  • There are uncountably many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g. the algebraic closure of Q(π).

Separable closure

An algebraic closure Kalg of K contains a unique separable extension Ksep of K containing all (algebraic) separable extensions of K within Kalg. This subextension is called a separable closure of K. Since a separable extension of a separable extension is again separable, there are no finite separable extensions of Ksep, of degree > 1. Saying this another way, K is contained in a separably-closed algebraic extension field. It is essentially unique (up to isomorphism).[5]

The separable closure is the full algebraic closure if and only if K is a perfect field. For example, if K is a field of characteristic p and if X is transcendental over K, is a non-separable algebraic field extension.

In general, the absolute Galois group of K is the Galois group of Ksep over K.[6]

See also

References

  1. ^ McCarthy (1991) p.21
  2. ^ M. F. Atiyah and I. G. Macdonald (1969). Introduction to commutative algebra. Addison-Wesley publishing Company. pp. 11-12.
  3. ^ a b Kaplansky (1972) pp.74-76
  4. ^ Brawley, Joel V.; Schnibben, George E. (1989), "2.2 The Algebraic Closure of a Finite Field", Infinite Algebraic Extensions of Finite Fields, Contemporary Mathematics, vol. 95, American Mathematical Society, pp. 22–23, ISBN 978-0-8218-5428-0, Zbl 0674.12009.
  5. ^ McCarthy (1991) p.22
  6. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 12. ISBN 978-3-540-77269-9. Zbl 1145.12001.