Jump to content

LTR retrotransposon: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Blanked the page
No edit summary
Line 1: Line 1:
===LTR retrotransposons===
LTR retrotransposons have [[Direct repeat|direct]] LTRs that range from ~100 bp to over 5 kb in size. LTR retrotransposons are further sub-classified into the Ty1-''copia''-like ([[Pseudoviridae]]), Ty3-''gypsy''-like ([[Metaviridae]]), and BEL-Pao-like groups based on both their degree of sequence similarity and the order of encoded gene products. Ty1-''copia'' and Ty3-''gypsy'' groups of retrotransposons are commonly found in high copy number (up to a few million copies per [[haploid]] [[cell nucleus|nucleus]]) in animals, fungi, protista, and plants genomes. BEL-Pao like elements have so far only been found in animals.<ref name=Copland>{{cite journal |vauthors=Copeland CS, Mann VH, Morales ME, Kalinna BH, Brindley PJ |title=The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements |journal=BMC Evol. Biol. |volume=5 |pages=20 |year=2005 |pmid=15725362 |pmc=554778 |doi=10.1186/1471-2148-5-20 |issue=1}}</ref><ref name=wicker>{{cite journal |vauthors=Wicker T, Sabot F, Hua-Van A, etal |title=A unified classification system for eukaryotic transposable elements |journal=Nat. Rev. Genet. |volume=8 |issue=12 |pages=973–82 |date=December 2007 |pmid=17984973 |doi=10.1038/nrg2165 }}</ref> Although [[retrovirus]]es are often classified separately, they share many features with LTR retrotransposons. A major difference with Ty1-''copia'' and Ty3-''gypsy'' retrotransposons is that retroviruses have an envelope protein (ENV). A retrovirus can be transformed into an LTR retrotransposon through inactivation or deletion of the domains that enable extracellular mobility. If such a retrovirus infects and subsequently inserts itself in the genome in germ line cells, it may become transmitted vertically and become an Endogenous Retrovirus (ERV).<ref name="wicker"/> Endogenous retroviruses make up about 8% of the human genome and approximately 10% of the mouse genome.<ref>{{cite journal |vauthors=McCarthy EM, McDonald JF |title=Long terminal repeat retrotransposons of Mus musculus |journal=Genome Biol. |volume=5 |issue=3 |pages=R14 |year=2004 |pmid=15003117 |pmc=395764 |doi=10.1186/gb-2004-5-3-r14 |url=http://genomebiology.com/2004/5/3/R14}}</ref>

In plant genomes, LTR retrotransposons are the major repetitive sequence class, e.g. able to constitute more than 75% of the maize genome.<ref>{{cite journal|last1=Baucom|first1=RS|last2=Estill|first2=JC|last3=Chaparro|first3=C|last4=Upshaw|first4=N|last5=Jogi|first5=A|last6=Deragon|first6=JM|last7=Westerman|first7=RP|last8=Sanmiguel|first8=PJ|last9=Bennetzen|first9=JL|title=Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.|journal=PLoS Genetics|date=November 2009|volume=5|issue=11|pages=e1000732|pmid=19936065|doi=10.1371/journal.pgen.1000732|pmc=2774510}}</ref>

====Ty1-''copia'' retrotransposons====

Ty1-''copia'' retrotransposons are abundant in species ranging from single-cell [[algae]] to [[bryophytes]], [[gymnosperms]], and [[angiosperms]]. They encode four protein domains in the following order: [[protease]], [[integrase]], [[reverse transcriptase]], and [[ribonuclease H]].

At least two classification systems exist for the subdivision of Ty1-''copia'' retrotransposons into five lineages:<ref>{{cite journal|last1=Wicker|first1=T|last2=Keller|first2=B|title=Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families.|journal=Genome Research|date=July 2007|volume=17|issue=7|pages=1072–81|pmid=17556529|doi=10.1101/gr.6214107|pmc=1899118}}</ref><ref>{{cite journal|last1=Llorens|first1=C|last2=Muñoz-Pomer|first2=A|last3=Bernad|first3=L|last4=Botella|first4=H|last5=Moya|first5=A|title=Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees.|journal=Biology Direct|date=2 November 2009|volume=4|pages=41|pmid=19883502|doi=10.1186/1745-6150-4-41|pmc=2774666}}</ref> ''Sireviruses''/Maximus, Oryco/Ivana, Retrofit/Ale, TORK (subdivided in Angela/Sto, TAR/Fourf, GMR/Tork), and Bianca.

''Sireviruses''/Maximus retrotransposons contain an additional putative envelope gene. This lineage is named for the founder element SIRE1 in the ''[[Soybean|Glycine max]]'' genome,<ref>{{cite journal|last1=Laten|first1=HM|last2=Majumdar|first2=A|last3=Gaucher|first3=EA|title=SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=9 June 1998|volume=95|issue=12|pages=6897–902|pmid=9618510|doi=10.1073/pnas.95.12.6897|pmc=22677}}</ref> and was later described in many species such as ''[[Maize|Zea mays]]'',<ref>{{cite journal|last1=Bousios|first1=A|last2=Kourmpetis|first2=YA|last3=Pavlidis|first3=P|last4=Minga|first4=E|last5=Tsaftaris|first5=A|last6=Darzentas|first6=N|title=The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story.|journal=The Plant journal|date=February 2012|volume=69|issue=3|pages=475–88|pmid=21967390|doi=10.1111/j.1365-313x.2011.04806.x}}</ref> ''[[Arabidopsis thaliana]]'',<ref>{{cite journal|last1=Kapitonov|first1=VV|last2=Jurka|first2=J|title=Molecular paleontology of transposable elements from Arabidopsis thaliana.|journal=Genetica|date=1999|volume=107|issue=1–3|pages=27–37|pmid=10952195}}</ref> ''[[Beta vulgaris]]'',<ref>{{cite journal|last1=Weber|first1=B|last2=Wenke|first2=T|last3=Frömmel|first3=U|last4=Schmidt|first4=T|last5=Heitkam|first5=T|title=The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age.|journal=Chromosome Research|date=February 2010|volume=18|issue=2|pages=247–63|pmid=20039119|doi=10.1007/s10577-009-9104-4}}</ref> and ''[[Pinus pinaster]]''.<ref>{{cite journal|last1=Miguel|first1=C|last2=Simões|first2=M|last3=Oliveira|first3=MM|last4=Rocheta|first4=M|title=Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster).|journal=Journal of Molecular Evolution|date=November 2008|volume=67|issue=5|pages=517–25|pmid=18925379|doi=10.1007/s00239-008-9168-3}}</ref> Plant ''Sireviruses'' of many sequenced plant genomes are summarized at the MASIVEdb ''Sirevirus'' database.<ref>{{cite journal|last1=Bousios|first1=A|last2=Minga|first2=E|last3=Kalitsou|first3=N|last4=Pantermali|first4=M|last5=Tsaballa|first5=A|last6=Darzentas|first6=N|title=MASiVEdb: the Sirevirus Plant Retrotransposon Database.|journal=BMC Genomics|date=30 April 2012|volume=13|pages=158|pmid=22545773|doi=10.1186/1471-2164-13-158|pmc=3414828}}</ref>

====Ty3-''gypsy'' retrotransposons====

Ty3-''gypsy'' retrotransposons (''Metaviridae'') are widely distributed in the plant kingdom, including both [[gymnosperm]]s and [[Flowering plant|angiosperms]]. They encode at least four protein domains in the order: [[protease]], [[reverse transcriptase]], [[ribonuclease H]], and [[integrase]]. Based on structure, presence/absence of specific protein domains, and conserved protein sequence motifs, they can be subdivided into several lineages:

''Errantiviruses'' contain an additional defective envelope ORF with similarities to the retroviral envelope gene. First described as Athila-elements in ''[[Arabidopsis thaliana]]'',<ref>{{cite journal|last1=Pélissier|first1=T|last2=Tutois|first2=S|last3=Deragon|first3=JM|last4=Tourmente|first4=S|last5=Genestier|first5=S|last6=Picard|first6=G|title=Athila, a new retroelement from Arabidopsis thaliana.|journal=Plant Molecular Biology|date=November 1995|volume=29|issue=3|pages=441–52|pmid=8534844|doi=10.1007/bf00020976}}</ref><ref>{{cite journal|last1=Wright|first1=DA|last2=Voytas|first2=DF|title=Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.|journal=Genetics|date=June 1998|volume=149|issue=2|pages=703–15|pmid=9611185|pmc=1460185}}</ref> they have been later identified in many species, such as ''[[Soybean|Glycine max]]''<ref>{{cite journal|last1=Wright|first1=DA|last2=Voytas|first2=DF|title=Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses.|journal=Genome Research|date=January 2002|volume=12|issue=1|pages=122–31|pmid=11779837|doi=10.1101/gr.196001|pmc=155253}}</ref> and ''[[Beta vulgaris]]''.<ref>{{cite journal|last1=Wollrab|first1=C|last2=Heitkam|first2=T|last3=Holtgräwe|first3=D|last4=Weisshaar|first4=B|last5=Minoche|first5=AE|last6=Dohm|first6=JC|last7=Himmelbauer|first7=H|last8=Schmidt|first8=T|title=Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome.|journal=The Plant Journal|date=November 2012|volume=72|issue=4|pages=636–51|pmid=22804913|doi=10.1111/j.1365-313x.2012.05107.x}}</ref>

''Chromoviruses'' contain an additional chromodomain (<u>chr</u>omatin <u>o</u>rganization <u>mo</u>difier domain) at the C-terminus of their integrase protein.<ref>{{cite journal|last1=Marín|first1=I|last2=Lloréns|first2=C|title=Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data.|journal=Molecular Biology and Evolution|date=July 2000|volume=17|issue=7|pages=1040–9|pmid=10889217|doi=10.1093/oxfordjournals.molbev.a026385}}</ref><ref>{{cite journal|last1=Gorinsek|first1=B|last2=Gubensek|first2=F|last3=Kordis|first3=D|title=Evolutionary genomics of chromoviruses in eukaryotes.|journal=Molecular Biology and Evolution|date=May 2004|volume=21|issue=5|pages=781–98|pmid=14739248|doi=10.1093/molbev/msh057}}</ref> They are widespread in plants and fungi, probably retaining protein domains during evolution of these two kingdoms.<ref>{{cite journal|last1=Novikova|first1=O|last2=Smyshlyaev|first2=G|last3=Blinov|first3=A|title=Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants.|journal=BMC Genomics|date=8 April 2010|volume=11|pages=231|pmid=20377908|doi=10.1186/1471-2164-11-231|pmc=2864245}}</ref> It is thought that the chromodomain directs retrotransposon integration to specific target sites.<ref>{{cite journal|last1=Gao|first1=X|last2=Hou|first2=Y|last3=Ebina|first3=H|last4=Levin|first4=HL|last5=Voytas|first5=DF|title=Chromodomains direct integration of retrotransposons to heterochromatin.|journal=Genome Research|date=March 2008|volume=18|issue=3|pages=359–69|pmid=18256242|doi=10.1101/gr.7146408|pmc=2259100}}</ref> According to sequence and structure of the chromodomain, chromoviruses are subdivided into the four clades CRM, Tekay, Reina and Galadriel. Chromoviruses from each clade show distinctive integration patterns, e.g. into centromeres or into the rRNA genes.<ref>{{cite journal|last1=Neumann|first1=P|last2=Navrátilová|first2=A|last3=Koblížková|first3=A|last4=Kejnovský|first4=E|last5=Hřibová|first5=E|last6=Hobza|first6=R|last7=Widmer|first7=A|last8=Doležel|first8=J|last9=Macas|first9=J|title=Plant centromeric retrotransposons: a structural and cytogenetic perspective.|journal=Mobile DNA|date=3 March 2011|volume=2|issue=1|pages=4|pmid=21371312|doi=10.1186/1759-8753-2-4|pmc=3059260}}</ref><ref>{{cite journal|last1=Weber|first1=B|last2=Heitkam|first2=T|last3=Holtgräwe|first3=D|last4=Weisshaar|first4=B|last5=Minoche|first5=AE|last6=Dohm|first6=JC|last7=Himmelbauer|first7=H|last8=Schmidt|first8=T|title=Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration.|journal=Mobile DNA|date=1 March 2013|volume=4|issue=1|pages=8|pmid=23448600|doi=10.1186/1759-8753-4-8|pmc=3605345}}</ref>

Ogre-elements are gigantic Ty3-''gypsy'' retrotransposons reaching lengths up to 25 kb.<ref>{{cite journal|last1=Macas|first1=J|last2=Neumann|first2=P|title=Ogre elements--a distinct group of plant Ty3/gypsy-like retrotransposons.|journal=Gene|date=1 April 2007|volume=390|issue=1–2|pages=108–16|pmid=17052864|doi=10.1016/j.gene.2006.08.007}}</ref> Ogre elements have been first described in ''[[Pea|Pisum sativum]]''.<ref>{{cite journal|last1=Neumann|first1=P|last2=Pozárková|first2=D|last3=Macas|first3=J|title=Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced.|journal=Plant Molecular Biology|date=October 2003|volume=53|issue=3|pages=399–410|pmid=14750527|doi=10.1023/b:plan.0000006945.77043.ce}}</ref>

''Metaviruses'' describe conventional Ty3-''gypsy'' retrotransposons that do not contain additional domains or ORFs.

====Endogenous retroviruses (ERV)====
{{Main article | Endogenous retrovirus}}
Endogenous retroviruses are the most important LTR retrotransposons in mammals, including humans where the Human ERVs make up 8% of the genome.
[[File:LINE1s and SINEs.png|thumb|400x400px|Genetic structure of murine LINE1 and SINEs. Bottom: proposed structure of L1 RNA-protein (RNP) complexes. ORF1 proteins form trimers, exhibiting RNA binding and nucleic acid chaperone activity. <ref name=":0" />]]

Revision as of 03:06, 28 September 2017

LTR retrotransposons

LTR retrotransposons have direct LTRs that range from ~100 bp to over 5 kb in size. LTR retrotransposons are further sub-classified into the Ty1-copia-like (Pseudoviridae), Ty3-gypsy-like (Metaviridae), and BEL-Pao-like groups based on both their degree of sequence similarity and the order of encoded gene products. Ty1-copia and Ty3-gypsy groups of retrotransposons are commonly found in high copy number (up to a few million copies per haploid nucleus) in animals, fungi, protista, and plants genomes. BEL-Pao like elements have so far only been found in animals.[1][2] Although retroviruses are often classified separately, they share many features with LTR retrotransposons. A major difference with Ty1-copia and Ty3-gypsy retrotransposons is that retroviruses have an envelope protein (ENV). A retrovirus can be transformed into an LTR retrotransposon through inactivation or deletion of the domains that enable extracellular mobility. If such a retrovirus infects and subsequently inserts itself in the genome in germ line cells, it may become transmitted vertically and become an Endogenous Retrovirus (ERV).[2] Endogenous retroviruses make up about 8% of the human genome and approximately 10% of the mouse genome.[3]

In plant genomes, LTR retrotransposons are the major repetitive sequence class, e.g. able to constitute more than 75% of the maize genome.[4]

Ty1-copia retrotransposons

Ty1-copia retrotransposons are abundant in species ranging from single-cell algae to bryophytes, gymnosperms, and angiosperms. They encode four protein domains in the following order: protease, integrase, reverse transcriptase, and ribonuclease H.

At least two classification systems exist for the subdivision of Ty1-copia retrotransposons into five lineages:[5][6] Sireviruses/Maximus, Oryco/Ivana, Retrofit/Ale, TORK (subdivided in Angela/Sto, TAR/Fourf, GMR/Tork), and Bianca.

Sireviruses/Maximus retrotransposons contain an additional putative envelope gene. This lineage is named for the founder element SIRE1 in the Glycine max genome,[7] and was later described in many species such as Zea mays,[8] Arabidopsis thaliana,[9] Beta vulgaris,[10] and Pinus pinaster.[11] Plant Sireviruses of many sequenced plant genomes are summarized at the MASIVEdb Sirevirus database.[12]

Ty3-gypsy retrotransposons

Ty3-gypsy retrotransposons (Metaviridae) are widely distributed in the plant kingdom, including both gymnosperms and angiosperms. They encode at least four protein domains in the order: protease, reverse transcriptase, ribonuclease H, and integrase. Based on structure, presence/absence of specific protein domains, and conserved protein sequence motifs, they can be subdivided into several lineages:

Errantiviruses contain an additional defective envelope ORF with similarities to the retroviral envelope gene. First described as Athila-elements in Arabidopsis thaliana,[13][14] they have been later identified in many species, such as Glycine max[15] and Beta vulgaris.[16]

Chromoviruses contain an additional chromodomain (chromatin organization modifier domain) at the C-terminus of their integrase protein.[17][18] They are widespread in plants and fungi, probably retaining protein domains during evolution of these two kingdoms.[19] It is thought that the chromodomain directs retrotransposon integration to specific target sites.[20] According to sequence and structure of the chromodomain, chromoviruses are subdivided into the four clades CRM, Tekay, Reina and Galadriel. Chromoviruses from each clade show distinctive integration patterns, e.g. into centromeres or into the rRNA genes.[21][22]

Ogre-elements are gigantic Ty3-gypsy retrotransposons reaching lengths up to 25 kb.[23] Ogre elements have been first described in Pisum sativum.[24]

Metaviruses describe conventional Ty3-gypsy retrotransposons that do not contain additional domains or ORFs.

Endogenous retroviruses (ERV)

Endogenous retroviruses are the most important LTR retrotransposons in mammals, including humans where the Human ERVs make up 8% of the genome.

Genetic structure of murine LINE1 and SINEs. Bottom: proposed structure of L1 RNA-protein (RNP) complexes. ORF1 proteins form trimers, exhibiting RNA binding and nucleic acid chaperone activity. [25]
  1. ^ Copeland CS, Mann VH, Morales ME, Kalinna BH, Brindley PJ (2005). "The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements". BMC Evol. Biol. 5 (1): 20. doi:10.1186/1471-2148-5-20. PMC 554778. PMID 15725362.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ a b Wicker T, Sabot F, Hua-Van A, et al. (December 2007). "A unified classification system for eukaryotic transposable elements". Nat. Rev. Genet. 8 (12): 973–82. doi:10.1038/nrg2165. PMID 17984973.
  3. ^ McCarthy EM, McDonald JF (2004). "Long terminal repeat retrotransposons of Mus musculus". Genome Biol. 5 (3): R14. doi:10.1186/gb-2004-5-3-r14. PMC 395764. PMID 15003117.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Baucom, RS; Estill, JC; Chaparro, C; Upshaw, N; Jogi, A; Deragon, JM; Westerman, RP; Sanmiguel, PJ; Bennetzen, JL (November 2009). "Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome". PLoS Genetics. 5 (11): e1000732. doi:10.1371/journal.pgen.1000732. PMC 2774510. PMID 19936065.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Wicker, T; Keller, B (July 2007). "Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families". Genome Research. 17 (7): 1072–81. doi:10.1101/gr.6214107. PMC 1899118. PMID 17556529.
  6. ^ Llorens, C; Muñoz-Pomer, A; Bernad, L; Botella, H; Moya, A (2 November 2009). "Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees". Biology Direct. 4: 41. doi:10.1186/1745-6150-4-41. PMC 2774666. PMID 19883502.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Laten, HM; Majumdar, A; Gaucher, EA (9 June 1998). "SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein". Proceedings of the National Academy of Sciences of the United States of America. 95 (12): 6897–902. doi:10.1073/pnas.95.12.6897. PMC 22677. PMID 9618510.
  8. ^ Bousios, A; Kourmpetis, YA; Pavlidis, P; Minga, E; Tsaftaris, A; Darzentas, N (February 2012). "The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story". The Plant journal. 69 (3): 475–88. doi:10.1111/j.1365-313x.2011.04806.x. PMID 21967390.
  9. ^ Kapitonov, VV; Jurka, J (1999). "Molecular paleontology of transposable elements from Arabidopsis thaliana". Genetica. 107 (1–3): 27–37. PMID 10952195.
  10. ^ Weber, B; Wenke, T; Frömmel, U; Schmidt, T; Heitkam, T (February 2010). "The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age". Chromosome Research. 18 (2): 247–63. doi:10.1007/s10577-009-9104-4. PMID 20039119.
  11. ^ Miguel, C; Simões, M; Oliveira, MM; Rocheta, M (November 2008). "Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster)". Journal of Molecular Evolution. 67 (5): 517–25. doi:10.1007/s00239-008-9168-3. PMID 18925379.
  12. ^ Bousios, A; Minga, E; Kalitsou, N; Pantermali, M; Tsaballa, A; Darzentas, N (30 April 2012). "MASiVEdb: the Sirevirus Plant Retrotransposon Database". BMC Genomics. 13: 158. doi:10.1186/1471-2164-13-158. PMC 3414828. PMID 22545773.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. ^ Pélissier, T; Tutois, S; Deragon, JM; Tourmente, S; Genestier, S; Picard, G (November 1995). "Athila, a new retroelement from Arabidopsis thaliana". Plant Molecular Biology. 29 (3): 441–52. doi:10.1007/bf00020976. PMID 8534844.
  14. ^ Wright, DA; Voytas, DF (June 1998). "Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins". Genetics. 149 (2): 703–15. PMC 1460185. PMID 9611185.
  15. ^ Wright, DA; Voytas, DF (January 2002). "Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses". Genome Research. 12 (1): 122–31. doi:10.1101/gr.196001. PMC 155253. PMID 11779837.
  16. ^ Wollrab, C; Heitkam, T; Holtgräwe, D; Weisshaar, B; Minoche, AE; Dohm, JC; Himmelbauer, H; Schmidt, T (November 2012). "Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome". The Plant Journal. 72 (4): 636–51. doi:10.1111/j.1365-313x.2012.05107.x. PMID 22804913.
  17. ^ Marín, I; Lloréns, C (July 2000). "Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data". Molecular Biology and Evolution. 17 (7): 1040–9. doi:10.1093/oxfordjournals.molbev.a026385. PMID 10889217.
  18. ^ Gorinsek, B; Gubensek, F; Kordis, D (May 2004). "Evolutionary genomics of chromoviruses in eukaryotes". Molecular Biology and Evolution. 21 (5): 781–98. doi:10.1093/molbev/msh057. PMID 14739248.
  19. ^ Novikova, O; Smyshlyaev, G; Blinov, A (8 April 2010). "Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants". BMC Genomics. 11: 231. doi:10.1186/1471-2164-11-231. PMC 2864245. PMID 20377908.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Gao, X; Hou, Y; Ebina, H; Levin, HL; Voytas, DF (March 2008). "Chromodomains direct integration of retrotransposons to heterochromatin". Genome Research. 18 (3): 359–69. doi:10.1101/gr.7146408. PMC 2259100. PMID 18256242.
  21. ^ Neumann, P; Navrátilová, A; Koblížková, A; Kejnovský, E; Hřibová, E; Hobza, R; Widmer, A; Doležel, J; Macas, J (3 March 2011). "Plant centromeric retrotransposons: a structural and cytogenetic perspective". Mobile DNA. 2 (1): 4. doi:10.1186/1759-8753-2-4. PMC 3059260. PMID 21371312.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  22. ^ Weber, B; Heitkam, T; Holtgräwe, D; Weisshaar, B; Minoche, AE; Dohm, JC; Himmelbauer, H; Schmidt, T (1 March 2013). "Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration". Mobile DNA. 4 (1): 8. doi:10.1186/1759-8753-4-8. PMC 3605345. PMID 23448600.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Macas, J; Neumann, P (1 April 2007). "Ogre elements--a distinct group of plant Ty3/gypsy-like retrotransposons". Gene. 390 (1–2): 108–16. doi:10.1016/j.gene.2006.08.007. PMID 17052864.
  24. ^ Neumann, P; Pozárková, D; Macas, J (October 2003). "Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced". Plant Molecular Biology. 53 (3): 399–410. doi:10.1023/b:plan.0000006945.77043.ce. PMID 14750527.
  25. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).