Jump to content

Elliptic complex

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Citation bot (talk | contribs) at 09:31, 21 January 2022 (Alter: url. URLs might have been anonymized. Add: jstor, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 672/2190). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, in particular in partial differential equations and differential geometry, an elliptic complex generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theory. They also arise in connection with the Atiyah-Singer index theorem and Atiyah-Bott fixed point theorem.

Definition

[edit]

If E0, E1, ..., Ek are vector bundles on a smooth manifold M (usually taken to be compact), then a differential complex is a sequence

of differential operators between the sheaves of sections of the Ei such that Pi+1Pi=0. A differential complex with first order operators is elliptic if the sequence of symbols

is exact outside of the zero section. Here π is the projection of the cotangent bundle T*M to M, and π* is the pullback of a vector bundle.

See also

[edit]

References

[edit]

Atiyah, M. F.; Singer, I. M. (1968). "The Index of Elliptic Operators: I". The Annals of Mathematics. 87 (3): 484. doi:10.2307/1970715. JSTOR 1970715.