Jump to content

Pentagramma mirificum

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Jacobolus (talk | contribs) at 17:06, 28 August 2023 (this is directly a latin phrase, not "from" latin). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Sample configurations of pentagramma mirificum
Relations between the angles and sides of five right triangles adjacent to the inner pentagon. Their Napier’s circles contain circular shifts of parts

Pentagramma mirificum (Latin for "miraculous pentagram") is a star polygon on a sphere, composed of five great circle arcs, all of whose internal angles are right angles. This shape was described by John Napier in his 1614 book Mirifici Logarithmorum Canonis Descriptio (Description of the Admirable Table of Logarithms) along with rules that link the values of trigonometric functions of five parts of a right spherical triangle (two angles and three sides). The properties of pentagramma mirificum were studied, among others, by Carl Friedrich Gauss.[1]

Geometric properties

[edit]

On a sphere, both the angles and the sides of a triangle (arcs of great circles) are measured as angles.

There are five right angles, each measuring at , , , , and

There are ten arcs, each measuring , , , , , , , , , and

In the spherical pentagon , every vertex is the pole of the opposite side. For instance, point is the pole of equator , point — the pole of equator , etc.

At each vertex of pentagon , the external angle is equal in measure to the opposite side. For instance, etc.

Napier's circles of spherical triangles , , , , and are rotations of one another.

Gauss's formulas

[edit]

Gauss introduced the notation

The following identities hold, allowing the determination of any three of the above quantities from the two remaining ones:[2]

Gauss proved the following "beautiful equality" (schöne Gleichung):[2]

It is satisfied, for instance, by numbers , whose product is equal to .

Proof of the first part of the equality:

Proof of the second part of the equality:

From Gauss comes also the formula[2]

where is the area of pentagon .

Gnomonic projection

[edit]

The image of spherical pentagon in the gnomonic projection (a projection from the centre of the sphere) onto any plane tangent to the sphere is a rectilinear pentagon. Its five vertices unambiguously determine a conic section; in this case — an ellipse. Gauss showed that the altitudes of pentagram (lines passing through vertices and perpendicular to opposite sides) cross in one point , which is the image of the point of tangency of the plane to sphere.

Arthur Cayley observed that, if we set the origin of a Cartesian coordinate system in point , then the coordinates of vertices : satisfy the equalities , where is the length of the radius of the sphere.[3]

References

[edit]
  1. ^ Gauss, Carl Friedrich (1866). "Pentagramma mirificum". Werke, Band III: Analysis. Göttingen: Königliche Gesellschaft der Wissenschaften. pp. 481–490.
  2. ^ a b c Coxeter, H. S. M. (1971). "Frieze patterns" (PDF). Acta Arithmetica. 18: 297–310. doi:10.4064/aa-18-1-297-310.
  3. ^ Cayley, Arthur (1871). "On Gauss's pentagramma mirificum". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 42 (280): 311–312. doi:10.1080/14786447108640572.
[edit]