Jump to content

Template:Infobox mathematical constant/doc

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Fgnievinski (talk | contribs) at 01:34, 27 February 2024 (See also). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
{{{name}}}
{{{symbol}}}
General information
Type{{{type}}}
Fields{{{fields_of_application}}}
Main uses{{{main_applications}}}
Representations
Value{{{value}}}
Algebraic form{{{algebraic_form}}}
Approximation{{{approximation}}}
Continued fraction{{{continued_fraction}}}
History
Discovered{{{discovery_date}}}
By{{{discovery_person}}}
First mention{{{discovery_work}}}
Named after{{{named_after}}}

{{{notes}}}

Blank syntax

[edit]
{{Infobox mathematical constant
| name = 
| symbol = 
| type = 
| fields_of_application = 
| main_applications = 
| value = 
| algebraic_form = 
| approximation = 
| continued_fraction = 
| discovery_date = 
| discovery_person = 
| discovery_work = 
| named_after = 
| notes = 
}}

Example

[edit]

The code below produces the box opposite:

Pi
π
3.14159...[1]
General information
TypeTranscendental
Fields
History
Discoveredcirca 1900 BCE
{{Infobox mathematical constant
| name = Pi
| symbol = {{pi}}
| type = [[Transcendental number|Transcendental]]
| approximation = 3.14159...<ref>{{Cite OEIS|A000796}}</ref>
| fields_of_application = {{flatlist |
* [[Geometry]]
* [[calculus]]
}}
| discovery_date = circa 1900 BCE
}}
Euler's number
e
General information
TypeTranscendental
Fields
Representations
Approximation2.71828...[2]
Continued fraction[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, ..., 1, 2n, 1, ...][3]
History
Discovered1685
ByJacob Bernoulli
First mentionQuæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685
Named after
{{Infobox mathematical constant
| name = Euler's number
| symbol = {{mvar|e}}
| type = [[Transcendental number|Transcendental]]
| fields_of_application = {{flatlist |
* [[Calculus]]
* [[statistics]]
}}
| approximation = 2.71828...<ref>{{Cite OEIS|A001113}}</ref>
| continued_fraction = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, ..., 1, 2n, 1, ...]<ref>{{Cite OEIS|A003417}}</ref>
| discovery_date = 1685
| discovery_person = [[Jacob Bernoulli]]
| discovery_work = ''Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685''
| named_after = {{flatlist |
* [[Leonhard Euler]]
* [[John Napier]]
}}
}}
  1. ^ Sloane, N. J. A. (ed.). "Sequence A000796". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A001113". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A003417". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

Parameters

[edit]

All parameters are optional. Separate multiple entries using {{Plainlist}}.

Parameter Notes
name Race name to display in top header (default = PAGENAME).
symbol The symbol used to represent the number. Displays large in the style of {{Infobox grapheme}}.
type The type of constant (rational, irrational, transcendental, etc.)
fields_of_application Fields that the constant is primarily associated with. Separate multiple entries using {{Flatlist}}.
main_applications Main uses for the constant. Separate multiple entries using {{Flatlist}}.
value A fixed and easy to represent value for the constant, if it exists.
algebraic_form Algebraic form for the constant.
approximation Numerical approximation for the constant.
continued_fraction Continued fraction for the constant.
discovery_date Date the constant was discovered, if possible to determine.
discovery_person Person who discovered the constant, if possible to determine. Wikilink if possible.
discovery_work The paper or book that first described the constant, if possible to determine.
named_after Who or what the common name of the constant is named after. Separate multiple entries using {{Flatlist}}.
notes Notes.

Tracking category

[edit]

See also

[edit]