Jump to content

Tetrahedral-cubic honeycomb

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Nectapeton (talk | contribs) at 22:36, 25 May 2024 (A cuboctahedron was labeled as a rhombicuboctahedron). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tetrahedron-cube honeycomb
Type Compact uniform honeycomb
Schläfli symbol {(4,3,3,3)} or {(3,3,3,4)}
Coxeter diagram or or
Cells {3,3}
{4,3}
r{4,3}
Faces triangular {3}
square {4}
Vertex figure
cuboctahedron
Coxeter group [(4,3,3,3)]
Properties Vertex-transitive, edge-transitive

In the geometry of hyperbolic 3-space, the tetrahedron-cube honeycomb is a compact uniform honeycomb, constructed from cube, tetrahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Images

Wide-angle perspective view

Centered on cube

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups