Jump to content

Heart rate

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Some P. Erson (talk | contribs) at 20:30, 9 May 2008 (Removed nonsense statement). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Age Normal heart rate
(beats per minute)[1]
newborn 130
3 months 150
6 months 135
1 year 125
2 years 115
3 years 100
4 years 100
6 years 100
8 years 90
9 years 95
12 years 85
Adult 60-101

Heart rate is considered one of the four vital signs. Usually it is calculated as the number of contractions (heart beats) of the heart in one minute and expressed as "beats per minute" (bpm). See "Heart" for information on embryofetal heart rates.

When resting, the average adult human heart beats at about 70 bpm (males) and 75 bpm (females); however, this rate varies among people and can be significantly lower in athletes. The infant/neonatal rate of heartbeat is around 130-150 bpm, the toddler's about 100–130 bpm, the older child's about 90–110 bpm, and the adolescent's about 80–100 bpm. 75 beats per minute translates to 4500 beats an hour, 108,000 beats per day, or about 39,420,000 beats in a year.

The pulse is the most commonly used method of measuring the heart rate. This method may be inaccurate in cases of low cardiac output, as happens in some arrhythmias, where the heart rate may be considerably higher than the pulse rate.

Listening to heart beats using a stethoscope, a process known as Auscultation, is a more accurate method of measuring the heart rate.

Measuring heart rate

Measuring the pulse at the neck and wrist.

The pulse rate (which in most people is identical to the heart rate) can be measured at any point on the body where an artery's pulsation is transmitted to the surface - often as it is compressed against an underlying structure like bone. Some commonly palpated sites are as listed.[dubiousdiscuss]

  1. The ventral aspect of the wrist on the side of the thumb (radial artery) , (and less commonly ulnar artery on the pinky side which is deeper and harder to palpate )
  2. The neck (carotid artery),
  3. The inside of the elbow, or under the biceps muscle (brachial artery)
  4. The groin,
  5. Behind the medial malleolus on the feet (posterior tibial artery)
  6. Middle of dorsum of the foot (dorsalis pedis).
  7. Behind the knee (popliteal artery)
  8. Over the abdomen (abdominal aorta)
  9. The chest. (aorta)This can be felt with one's hands or fingers but it is possible to auscultate the heart by utilizing a stethoscope.

NOTE: The thumb should never be used for measuring another person's heart rate, as its strong pulse may interfere with discriminating the site of pulsation, and you may count the thumb's pulse accidentally when measuring'[2] (Of course, this is a non-issue when measuring your own pulse).

Producing an electrocardiogram, or ECG (also abbreviated EKG), is one of the most precise methods of heart rate measurement. Continuous electrocardiographic monitoring of the heart is routinely done in many clinical settings, especially in critical care medicine. Commercial heart rate monitors are also available, consisting of a chest strap with electrodes. The signal is transmitted to a wrist receiver for display. Heart rate monitors allow accurate measurements to be taken continuously and can be used during exercise when manual measurement would be difficult or impossible (such as when the hands are being used).

Maximum heart rate

Maximum heart rate (also called STD, or HRmax) is the highest number of times your heart can contract in one minute, or the heart rate that a person could achieve during maximal physical exertion. It is not the maximum one should obtain often during exercise. MHR is used as a base number to calculate target heart rate for exercise (see below).[3] The heart beats about 60 to 80 times a minute when we're at rest. Resting heart rate usually rises with age, and it's generally lower in physically fit people. Resting heart rate is used to determine one's training target heart rate. Athletes sometimes measure their resting heart rate as one way to find out if they're over trained. The heart rate adapts to changes in the body's need for oxygen, such as during exercise or sleep.

Measuring HRmax

Fox and Haskell formula

The most accurate way of measuring HRmax for an individual is via a cardiac stress test. In such a test, the subject exercises while being monitored by an electrocardiogram (ECG). During the test, the intensity of exercise is periodically increased (if a treadmill is being used, through increase in speed or slope of the treadmill), or until certain changes in heart function are detected in the ECG (at which point the subject is directed to stop). Typical durations of such a test range from 10 to 20 minutes.

A less costly way to calculate is to warm up thoroughly on a bike (maybe 15 minutes on the flats). On a long, steady hill (doesn't have to be steep) increase effort every minute for at least 5 minutes until you can't go any faster (sitting, not standing). Then full-out sprint for 15 seconds (it is OK to stand at this point). Stop, get off the bike (this is for safety reasons - not mandatory) and immediately check your heart rate at its maximum for a full 60 seconds. This is because checking for 30 seconds and doubling it is inaccurate.

Many exercise machines (stationary bikes, treadmills, etc) have a built-in heart rate monitors. To ensure you are getting an accurate MHR reading, it's best to do this test on different days. Also, if you are doing this at a health club, try using various machines.

Conducting a maximal exercise test can require expensive equipment. If you are just beginning an exercise regimen, you should only perform this test in the presence of medical staff due to risks associated with high heart rates. Instead, people typically use a formula to estimate their individual Maximum Heart Rate. The most common formula encountered is:

HRmax = 220 − age (caution: can vary significantly!)

This is attributed to various sources, often "Fox and Haskell". While the most common (and easy to remember and calculate), this particular formula is not considered by some to be a good predictor of HRmax.

A 2002 study [4] of 43 different formulae for HRmax (including the one above) concluded the following:

1) No "acceptable" formula currently existed, (they used the term "acceptable" to mean acceptable for both prediction of , and prescription of exercise training HR ranges)
2) The most accurate formula of those examined was:
HRmax = 205.8 − (0.685 * age)
This was found to have a Standard Deviation that, although large (6.4 bpm), was still deemed to be acceptable for the use of prescribing exercise training HR ranges.

Other often cited formulae are:

HRmax = 206.3 − (0.711 × age)
(Often attributed to "Londeree and Moeschberger from the University of Missouri–Columbia")
HRmax = 217 − (0.85 × age)
(Often attributed to "Miller et al. from Indiana University")

These figures are still dependent on physiology and fitness; for example an endurance runner's rates will typically be lower due to the increased size of the heart required to support the exercise, while a sprinter's rates will be higher due to the improved response time and short duration. Also, population averages are just that. Two 40-year-old males with same height, weight, strength, etc. may each have predicted heart rates of 180 (= 220-Age), but these two males could have actual Max HR 20 beats apart (e.g. 170-190). It's important not to guess.

Recovery heart rate

This is the amount of time after strenuous exercise that the heart takes to return to its normal rate.

Target heart rate

Target heart rate (THR), or training heart rate, is a desired range of heart rate reached during aerobic exercise which enables one's heart and lungs to receive the most benefit from a workout. This theoretical range varies based on one's physical condition, age, and previous training. Below are two ways to calculate one's Target Heart Rate. In each of these methods, there is an element called "intensity" which is expressed as a percentage. THR can be calculated by using a range of 50%–85% intensity. However, it is crucial one have an accurate MHR calculation first to ensure these calculations are meaningful (see on top of this part of information)

Affecting heart rate

Having an increase in heart rate can be for a range of reasons; arousal, stress and anxiety; highly aroused individuals are mentally and physically activated; they experience increased heart rate, respiration and sweating.

Karvonen method

The Karvonen method factors in Resting Heart Rate (HRrest) to calculate Target Heart Rate (THR):

THR = ((HRmax − HRrest) × %Intensity) + HRrest

Example for someone with a HRmax of 180 and a HRrest of 70:
50% intensity: ((180 − 70) × 0.50) + 70 = 125 bpm
85% intensity: ((180 − 70) × 0.85) + 70 = 163 bpm

Zoladz method

An alternative to the Karvonen method is the Zoladz method, which derives exercise zones by subtracting values from HRmax.

THR = HRmax – Adjuster ± 5 bpm
Zone 1 Adjuster = 50 bpm
Zone 2 Adjuster = 40 bpm
Zone 3 Adjuster = 30 bpm
Zone 4 Adjuster = 20 bpm
Zone 5 Adjuster = 10 bpm mpg32

Example for someone with a HRmax of 180:
Zone 1 (easy exercise) : 220 − age = 0; * 65 → 125 t

Zone 2 (tough exercise): 220 − age = 0; * 85 → 155

Heart rate reserve

Heart rate reserve (HRR) is a term used to describe the difference between a person's measured or predicted maximum heart rate and resting heart rate. Some methods of measurement of exercise intensity measure percentage of heart rate reserve. Additionally, as a person increases their cardiovascular fitness, their HRrest will drop, thus the heart rate reserve will increase. Percentage of HRR is equivalent to percentage of VO2 reserve.

HRR = HRmax − HRrest

Heart rate abnormalities

Tachycardia

Tachycardia is a resting heart rate more than 100 beats per minute. This number can vary as smaller people and children have faster heart rates than average adults.

Bradycardia

Bradycardia is defined as a heart rate less than 60 beats per minute although it is seldom symptomatic until below 50 bpm. Trained athletes tend to have slow resting heart rates, and resting bradycardia in athletes should not be considered abnormal if the individual has no symptoms associated with it. Again, this number can vary as smaller people and children have faster heart rates than adults.

Miguel Indurain, a cyclist and five time Tour de France winner, had a resting heart rate of 28 beats per minute, one of the lowest ever recorded in a healthy human.[5]

See also

References

  1. ^ Daniel Limmer and Michael F. O'Keefe. 2005. Emergency Care 10th ed. Edward T. Dickinson, Ed. Pearson, Prentice Hall. Upper Saddle River, New Jersey. Page 214.
  2. ^ Regulation of Human Heart Rate. Serendip. Retrieved on June 27, 2007.
  3. ^ Physical Activity for Everyone. Department of Health and Human Services, Centers for Disease Control and Prevention. Retrieved on May 1, 2007.
  4. ^ Robergs, Robert A.; Landwehr, Roberto (May 2002), "The Surprising History of the "HRmax=220-age" Equation" (PDF), Journal of Exercise Physiology online, 5 (2), ISSN 1097-9751, retrieved 2008-02-28
  5. ^ Cardiac Output. LiDCO Ltd. Sales and Marketing. Retrieved on May 1, 2007.