Jump to content

Talk:Ethanol fuel

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 4.254.113.17 (talk) at 03:23, 7 December 2005 (Reduce Resource Curse as part of National Security). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Two Nations

I see a split forming between the U.S. and Brazil. Do you think an article about ethanol in America should be added? For example, ethanol has been at the heart of some sociological problems in brazil, yet in the U.S. it is seen as an almost entirely benevolent development. The common theme is the sociological impact of fuel on a Nation, therefore I would also mention the adverse effect of the petroleum industry in Venezuela.

The US experience should be fleshed out too. (I was surprised to learn that California banned MTBE and will use ethanol instead. And that was only two days after I first heard of MTBE... 8-) Then there is also the Russian methanol-from-eucaliptus program (which was news to me, too). So yes, eventually those sections should be split off as separate articles.
However methinks that some of the Brazilian numbers should be retained in the general article since they are sort of an upper limit to what can be achieved today. For instance, my rough estimate is that it takes some 300,000 m^2 of sugarcane plantation (30 city blocks) to feed one passenger car. Obviously this is not viable unless there is plenty of cheap land with good soil.
The effect of venezuelan oil does not seem much relevant (and it is hardly "adverse" for the venezuelans!)
Jorge Stolfi 07:46, 19 Jun 2004 (UTC)

Biofuels

This is a minor point but, it seems that the introduction implies only ethanol can be derived from biomass. As I understand it, all sorts of fuels can be derived from biomass. Though ethanol and biodiesel are apparently the most promising of these fuels regardless the ultimate source - petroleum or biomass. My understanding is that methanol is less desirable than ethanol primarily because ethanol is almost non-toxic whereas methanol is poisonous more dangerous due to invisible fires. It may also be less economical.

Besides this article (alcohol as a fuel), alcohol, ethanol, and methanol, there are articles bioalcohol, biofuel, biodiesel, how to make biodiesel. These should be merged and/or reorganized and/or fleshed out.
Another problem with methanol is that it is cheap only if amnufactured from natural gas, but then one would be pumping carbon into the athmosphere just as with gasoline.
Jorge Stolfi 07:46, 19 Jun 2004 (UTC)

this is true...

I think this article is really taking shape!

old post

The language is extremely convoluted and the sentences are mostly way too long. Many places could use rephrasing. I tried to fix some typos and do neutral and simplifying rephrasings, but didn't touch the punctuation as it may just be american or otherwise odd :) The comments also seem to cry for figures at many places. I offer no comment on the content personally. --blades 18:02, May 8, 2004 (UTC)

bizarre examples

Are you sure that sugarcane would grow in Germany? If yes, why they obtain sugar from beetroots? If no, statement that "if Germany were to be entirely covered with sugarcane plantations, it would get only half of its present energy needs" is obviously false. It would get nothing, as no sugarcane plant would mature.

If you want this example to shed a light on the matter, recount sugarcane to beetroots, or change the country. Otherwise, it leads to confusion and somebody (e.g. radical german eco-activists with no agricultural knowledge) could think that if Germany reduced it's energy consumption by 2/3, it would rely on sugarcane as only energy source.

grzes

Point taken. However changing the example to beets is not good either because it would make it seem that the problem is the climate and what crops can grow (beet vs sugarcane), which is not what is in question. The real problem is land availability (Germany uses lots of energy and has no room to spare for fuel plantations, of any kind, whereas Brazil uses less energy and still has plenty of unused or badly-used land). I will see if I can maek the point clearer...
Jorge Stolfi 08:30, 27 Jun 2004 (UTC)
Problem is not only the land availablity, but as well just the climate. There is a major difference between one square km in Germany and one square km in Brazil, and the difference is much larger than the difference between solar exposures of these lands. Germany is not only less solarized, but also is much colder, has winter (excluded from growing) and so on. The same problem applies to most advanced (and thus energy-consuming) countries in the world. Sugarcane will grow in hardly any of them. In these countries usually beetroots may grow, but beetroot has way poorer efficiency than sugarcane (which is the most efficient of known crops). grzes

Are we sure ethanol is "renewable"?

Pimentel states "ethanol production from corn cannot be considered renewable energy. Its production process uses more nonrenewable fossil energy resources both in the production of the corn and in the fermentation/distillation processes than is produced as ethanol energy."

The "Renewable" paragraph in the article is unqualified in stating that ethanol is renewable. That's not neutral if there are credible people disputing it, is it?

Pimentel's article is entitled "Energy and Dollar Costs of Ethanol Production with Corn."

- He Assumes that you have to use liquid fuel to produce corn. Ask the Amish if they use any gas to produce their corn...

Pimentel's findings based on flawed data

Pimentel's study was made in 1991 and used old or inaccurate data which biased the results against ethanol. Consider that any such study requires assumtions about such things as corn yields, ethanol production technologies, and fertilizers. Others including the USDA have come to a different conclusion than Pimentel's. See "Estimating the Net Energy Balance of Corn Ethanol" by Hosein Shapouri, James A. Duffield and Michael S. Graboski, which discredits Pimentel's study.

Environmental effect

Please delete this line: "With condensed agriculture, like hydroponics and greenhouses, less land is used to grow more crops"

It is flat wrong to think that these methods would ever be used for growing fuel crops. Also, while you’re at it why not mention the deforestation problem in Brazil. -jcp-

Real Price Ethanol vs Gasoline (and Diesel)

The section regarding the price of Ethanol and Gasoline: http://en.wikipedia.org/wiki/Alcohol_fuel#Economics_of_Corn_Ethanol_in_the_U.S.


One citation hardly supports the argument that the real cost of gas at the pump should be $5-15 although it claims to have that conclusion. It refers to another article on the same website (progress.org) that actually is refering to the cost driving, not gasoline itself (such as roads and health). Furthermore, this article never mentions $15/gal for gasoline. It was only by googling International Centre for Technology Assessment that I found their website and searched their website for "gasoline" and found a PDF http://www.icta.org/doc/Real%20Price%20of%20Gasoline.pdf which is the study cited. Again they argue that projects such as government spending on highway building and military operations such as guarding oil, buying for the US petroleum reserver, and the budget of the US Coast Guard (since they fall under the Dept of Transportation and not DoD nor DoN). The Army Corps of Engineers is also considered a subsidy that lowers the cost of gasoline.

The valid points they do make are regarding tax breaks and R&D. However, they do not consider that consumers are likely paying for this from the taxes on gasoline. While gas taxes would not likely cover all of this, saying the price for gas at the pump should be $15 is quite an exageration, as is their lower range of $5.

The other link I was unable to reach from my Interne Service.

Most importantly, these articles state the consumer's possible cost, not the cost of production. The wiki entry for ethanol was only claiming the cost of ethanol production, not the cost to consumer. However, given price of oil now, ethanol is probably cheaper than gasoline (at least in California).

As refinery capacity grows and shrinks, which appears to be a huge factor, ethanol's price against gasoline will also change. However, with the increasing demand from China ethanol is likely to become cheaper than gas. There is much of the developing world that will one day want to drive cars. If this day happens when we are not ready, ethanol will extremely likely to be cheaper than petroleum fuels.

Someone should just throw ethanol out in the market and see how it does. We've probably wasted more fuel arguing about this than if we just tried using ethanol in the beginning.

Ethanol more efficient?

I read this sentence and was puzzled: "Automobiles optimized to run on ethanol can travel further per unit volume of fuel than equivalent cars setup for gasoline." This seems to go against all the empirical data: Every flexible fuel vehicle I've seen gets a lower MPG from ethanol than from gasoline. Are we saying that these vehicles are not "optimized to run on ethanol"? I thought it was a matter of simple chemistry: Ethanol has a lower energy density, therefore it takes more ethanol to move a car a mile. This could use a cite. Rhobite 20:17, 19 September 2005 (UTC)[reply]

No responses in weeks... I removed the paragraph since I believe it's false - every FFV gets lower mileage with E85 than with gas. Rhobite 17:10, 11 October 2005 (UTC)[reply]
Since there is no citation given for the claim, I think it's correct to remove it. However, your reasoning is flawed. The removed claim essentially stated that an engine optimized for ethanol could get more energy per unit volume of fuel than an engine optimized for gasoline. You claim that that's wrong because a flexible fuel engine, which can burn both ethanol and gasoline but isn't necessarily optimized to burn either, gets more energy from gas than a gas/ethanol mix. Do you see the problem? --Flatline 18:31, 11 October 2005 (UTC)[reply]
I thought about that, but it still contradicts what I've read (along with common sense). Ethanol has a lower energy density than gasoline, and you can't violate the laws of physics. Granted, gasoline engines are about 35% efficient. An ethanol engine which was significantly more efficient than a gasoline engine could theoretically get the same or higher mileage. But this just seems very unlikely. And I'm not aware of any ethanol-only vehicles which actually get great mileage. All modern ethanol vehicles are FFV and I don't think the old Brazilian ethanol vehicles were too efficient. Rhobite 22:54, 11 October 2005 (UTC)[reply]
Take a look at this site where they give the results of testing with a 1970 chevy truck burning alcohol. Their results do show improved fuel efficiency after adjusting the carb main jet size. They go on to explain that this is because of alcohol's higher octane rating which allows for higher compression ratios. I don't know enough about this stuff to judge how trustworthy they're being, but maybe you do. --Flatline 14:31, 12 October 2005 (UTC)[reply]
Just for reference, I found the above site by googling for "alcohol burning engine" and it was the first site listed. --Flatline 14:46, 12 October 2005 (UTC)[reply]
Okay, I think I see what's going on here. A gas engine may have an average efficiency of 35%, but under load it is much worse than that since the engine must be running above the fuel-optimal rpm to produce the required torque to pull the load. Burning alcohol, with it's improved torque curve, the engine does not need to be pushed as far past the fuel-optimal, and so can out-perform the gas engine for fuel efficiency while under load. It's not really a question of which fuel allows for most efficiency, but rather which deviates the least from the fuel-optimal conditions. Assuming my understanding is correct, this supports the original claim when the engine is under severe load.
The website I mentioned above doesn't do a comparison of an unloaded truck, but it's interesting to note that they were able to get the fuel-efficiency of the loaded truck burning alcohol to almost match the fuel-efficiency of the unloaded truck burning gas. I've found several other sites talking about using alcohol as a fuel, and they all seem to agree that in general, alcohol generates less work per unit volume than gasoline. The original claim is probably true under certain, non-optimal, conditions, but in general I would suspect that it's not true. --Flatline 16:27, 17 October 2005 (UTC)[reply]

Reduce Resource Curse as part of National Security

James Woolsey and Frank Gaffney advocate reduction of foreign oil use as not just a way of reducing the funding of terrorism, but necessary as to reduce the Resource curse that afflicts far more than just terrorism producing nations. There should be a broader description of their efforts, but it's also not limited to just ethanol fuel. Biodiesel, thermal depolymerization, efficiency (Woolsey drives a Prius, which is not E85 compatible), and other means are sought to this end.