Goldbach's conjecture
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
- Every even integer greater than 2 is a Goldbach number, a number that can be expressed as the sum of two primes.[1]
Expressing a given even number as a sum of two primes is called a Goldbach partition of the number. For example,
- 4 = 2 + 2
- 6 = 3 + 3
- 8 = 3 + 5
- 10 = 7 + 3 or 5 + 5
- 12 = 5 + 7
- 14 = 3 + 11 or 7 + 7
Origins
On 7 June, 1742, the Prussian mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII)[3] in which he proposed the following conjecture:
- Every integer which can be written as the sum of two primes, can also be written as the sum of as many primes as one wishes, until all terms are units.
He then proposed a second conjecture in the margin of his letter:
- Every integer greater than 2 can be written as the sum of three primes.
He considered 1 to be a prime number, a convention subsequently abandoned.[4] The two conjectures are now known to be equivalent, but this didn't seem to be an issue at the time. A modern version of Goldbach's marginal conjecture is:
- Every integer greater than 5 can be written as the sum of three primes.
Euler replied in a letter dated 30 June, 1742, and reminded Goldbach of an earlier conversation they had ("...so Ew vormals mit mir communicirt haben.."), in which Goldbach remarked his original (and not marginal) conjecture followed from the following statement
- Every even integer greater than 2 can be written as the sum of two primes,
which is thus also a conjecture of Goldbach. In the letter dated 30 June, 1742, Euler stated:
“Dass ... ein jeder numerus par eine summa duorum primorum sey, halte ich für ein ganz gewisses theorema, ungeachtet ich dasselbe necht demonstriren kann.” ("every even integer is a sum of two primes. I regard this as a completely certain theorem, although I cannot prove it.")[5][6]
Goldbach's third version (equivalent to the two other versions) is the form in which the conjecture is usually expressed today. It is also known as the "strong", "even", or "binary" Goldbach conjecture, to distinguish it from a weaker corollary. The strong Goldbach conjecture implies the conjecture that all odd numbers greater than 7 are the sum of three odd primes, which is known today variously as the "weak" Goldbach conjecture, the "odd" Goldbach conjecture, or the "ternary" Goldbach conjecture. Both questions have remained unsolved ever since, although the weak form of the conjecture appears to be much closer to resolution than the strong one. If the strong Goldbach conjecture is true, the weak Goldbach conjecture will be true by implication.[6]
Verified results
For small values of n, the strong Goldbach conjecture (and hence the weak Goldbach conjecture) can be verified directly. For instance, N. Pipping in 1938 laboriously verified the conjecture up to n ≤ 105 [7]. With the advent of computers, many more small values of n have been checked; T. Oliveira e Silva is running a distributed computer search that has verified the conjecture for n ≤ 1.609*1018 and some higher small ranges up to 4*1018 (double checked up to 1*1017).[8]
Heuristic justification
Statistical considerations which focus on the probabilistic distribution of prime numbers present informal evidence in favour of the conjecture (in both the weak and strong forms) for sufficiently large integers: the greater the integer, the more ways there are available for that number to be represented as the sum of two or three other numbers, and the more "likely" it becomes that at least one of these representations consists entirely of primes.
A very crude version of the heuristic probabilistic argument (for the strong form of the Goldbach conjecture) is as follows. The prime number theorem asserts that an integer m selected at random has roughly a chance of being prime. Thus if n is a large even integer and m is a number between 3 and n/2, then one might expect the probability of m and n-m simultaneously being prime to be . This heuristic is non-rigorous for a number of reasons; for instance, it assumes that the events that m and are prime are statistically independent of each other. Nevertheless, if one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly
Since this quantity goes to infinity as n increases, we expect that every large even integer has not just one representation as the sum of two primes, but in fact has very many such representations.
The above heuristic argument is actually somewhat inaccurate, because it ignores some dependence between the events of m and being prime. For instance, if m is odd then is also odd, and if m is even, then is even, a non-trivial relation because (besides 2) only odd numbers can be prime. Similarly, if n is divisible by 3, and m was already a prime distinct from 3, then would also be coprime to 3 and thus be slightly more likely to be prime than a general number. Pursuing this type of analysis more carefully, Hardy and Littlewood in 1923 conjectured (as part of their famous Hardy-Littlewood prime tuple conjecture) that for any fixed c ≥ 2, the number of representations of a large integer n as the sum of c primes with should be asymptotically equal to
where the product is over all primes p, and is the number of solutions to the equation in modular arithmetic, subject to the constraints . This formula has been rigorously proven to be asymptotically valid for c ≥ 3 from the work of Vinogradov, but is still only a conjecture when . In the latter case, the above formula simplifies to 0 when n is odd, and to
when n is even, where is the twin prime constant
This asymptotic is sometimes known as the extended Goldbach conjecture. The strong Goldbach conjecture is in fact very similar to the twin prime conjecture, and the two conjectures are believed to be of roughly comparable difficulty.
The Goldbach partition functions shown here can be displayed as histograms which informatively illustrate the above equations. See Goldbach's comet[9].
Rigorous results
Considerable work has been done on the weak Goldbach conjecture.
The strong Goldbach conjecture is much more difficult. Using the method of Vinogradov, Chudakov,[10] van der Corput,[11] and Estermann[12] showed that almost all even numbers can be written as the sum of two primes (in the sense that the fraction of even numbers which can be so written tends towards 1). In 1930, Lev Schnirelmann proved that every even number n ≥ 4 can be written as the sum of at most 20 primes. This result was subsequently improved by many authors; currently, the best known result is due to Olivier Ramaré, who in 1995 showed that every even number n ≥ 4 is in fact the sum of at most six primes. In fact, resolving the weak Goldbach conjecture will also directly imply that every even number n ≥ 4 is the sum of at most four primes.[13]
Chen Jingrun showed in 1973 using the methods of sieve theory that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes)[14]—e.g., 100 = 23 + 7·11.
In 1975, Hugh Montgomery and Robert Charles Vaughan showed that "most" even numbers were expressible as the sum of two primes. More precisely, they showed that there existed positive constants c and C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most exceptions. In particular, the set of even integers which are not the sum of two primes has density zero.
Linnik proved in 1951 the existence of a constant K such that every sufficiently large even number is the sum of two primes and at most K powers of 2. Roger Heath-Brown and Jan-Christoph Schlage-Puchta in 2002 found that K=13 works.[15] This was improved to K=8 by Pintz and Ruzsa.[16]
One can pose similar questions when primes are replaced by other special sets of numbers, such as the squares. For instance, it was proven by Lagrange that every positive integer is the sum of four squares. See Waring's problem and the related Waring–Goldbach problem on sums of powers of primes.
Attempted proofs
As with many famous conjectures in mathematics, there are a number of purported proofs of the Goldbach conjecture, none of which is currently accepted by the mathematical community.
Similar conjectures
- Lemoine's conjecture (also called Levy's conjecture) - states that all odd integers greater than 5 can be represented as the sum of an odd prime number and an even semiprime.
- Waring–Goldbach problem - asks whether large numbers can be expressed as a sum, with at most a constant number of terms, of like powers of primes.
In popular culture
- To generate publicity for the novel Uncle Petros and Goldbach's Conjecture by Apostolos Doxiadis, British publisher Tony Faber offered a $1,000,000 prize if a proof was submitted before April 2002. The prize was never claimed.
- The television drama Lewis featured a mathematics professor who had won the Fields medal for his work on Goldbach's conjecture.
- Isaac Asimov's short story "Sixty Million Trillion Combinations" featured a mathematician who suspected that his work on Goldbach's conjecture had been stolen.
- In the Spanish movie La habitación de Fermat (2007), a young mathematician claims to have proved the conjecture.
- A reference is made to the conjecture in the Futurama straight-to-DVD film The Beast with a Billion Backs, in which multiple elementary proofs are found in a Heaven-like scenario.
References
- ^ Weisstein, Eric W. "Goldbach Number". MathWorld.
- ^ “Goldbach's Conjecture" by Hector Zenil, Wolfram Demonstrations Project, 2007.
- ^ [1]
- ^ Weisstein, Eric W. "Goldbach Conjecture". MathWorld.
- ^ Ingham, AE. "Popular Lectures" (PDF). Retrieved 2009-09-23.
- ^ a b Caldwell, Chris (2008). "Goldbach's conjecture". Retrieved 2008-08-13.
- ^ Pipping, N. "Die Goldbachsche Vermutung und der Goldbach-Vinogradovsche Satz." Acta. Acad. Aboensis, Math. Phys. 11, 4-25, 1938.
- ^ Tomás Oliveira e Silva, [2]. Retrieved 25 April 2008.
- ^ Fliegel, Henry F.; Robertson, Douglas S.; "Goldbach's Comet: the numbers related to Goldbach's Conjecture”; Journal of Recreational Mathematics, v21(1) 1-7, 1989.
- ^ Chudakov, Nikolai G. (1937). Doklady Akademii Nauk SSSR. 17: 335–338.
{{cite journal}}
: Missing or empty|title=
(help); Unknown parameter|trans_title=
ignored (|trans-title=
suggested) (help) - ^ Van der Corput, J. G, "Sur l'hypothèse de Goldbach." Proc. Akad. Wet. Amsterdam, 41 (1938), 76-80.
- ^ Estermann, T. "On Goldbach's problem: proof that almost all even positive integers are sums of two primes." Proc. London Math. Soc., (2) 44 (1938), 307-314.
- ^ Sinisalo, Matti K. (Oct., 1993), "Checking the Goldbach Conjecture up to 4 1011", Mathematics of Computation, vol. 61, no. 204, pp. 931–934
{{citation}}
: Check date values in:|date=
(help) - ^ J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157--176.
- ^ D. R. Heath-Brown, J. C. Puchta, Integers represented as a sum of primes and powers of two. The Asian Journal of Mathematics, 6 (2002), no. 3, pages 535-565.
- ^ J. Pintz, I. Z. Ruzsa: On Linnik's approximation to Goldbach's problem, I, Acta Arithmetica, 109(2003), 169–194.
Further reading
- Deshouillers, J.-M.; Effinger, G.; te Riele, H.; Zinoviev, D. (1997), "A complete Vinogradov 3-primes theorem under the Riemann hypothesis" (PDF), Electron. Res. Announc. Amer. Math. Soc., 3: 99–104
{{citation}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help) - Doxiadis, Apostolos (2001), Uncle Petros and Goldbach's Conjecture, New York: Bloomsbury, ISBN 1582341281
- Montgomery, H. L.; Vaughan, R. C. (1975), "The exceptional set in Goldbach's problem. Collection of articles in memory of Jurii Vladimirovich Linnik", Acta arithmetica, vol. 27, pp. 353–370
{{citation}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help)
External links
- Goldbach's original letter to Euler - PDF format (in German and Latin)
- Goldbach's conjecture, part of Chris Caldwell's Prime Pages.
- Goldbach conjecture verification, Tomás Oliveira e Silva's distributed computer search.
- Online tool to test Goldbach's conjecture on submitted integers.
- Goldbach Weave showing a graphical representation of Goldbach's conjecture.