Jump to content

Fuligo septica

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 184.189.154.1 (talk) at 12:31, 25 March 2011 (Not a scientific source or link, deleted per WP:EL and WP:VOW.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Fuligo septica
Fuligo septica
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
Fuligo septica

Synonyms

Aethalium septicum (L.) Fr.
Fuligo varians Sommerf.
Mucor septicus L.
Reticularia septica (L.) With.

Fuligo septica is a species of plasmodial slime mold, and a member of the Myxomycetes class. It is commonly known as the dog vomit slime mold[1] or scrambled egg slime because of its peculiar yellowish, bile-colored appearance. A common species with a worldwide distribution, it is often found on bark mulch in urban areas after heavy rain or excessive watering. Their spores are produced on or in aerial sporangia and are spread by wind.

History and taxonomy

The first description of the species was provided by French botanist Jean Marchant in 1727, who referred to it as "flowers of tan"; Marchant classified it as a "sponge".[2] The species was given its current name by German botanist Friedrich Heinrich Wiggers in 1780.

Description and habitat

Fuligo septica plasmodium with white and yellow tissue. Note trail at lower right.

Like many slime molds, the cells of this species typically aggregate to form a plasmodium, a multinucleate mass of undifferentiated cells that may move in an ameboid-like fashion during the search for nutrients. F. septica's plasmodium may be anywhere from white to yellow-grey[3], typically 2.5–20 cm (1.0–7.9 in) in diameter, and 1–3 cm (0.4–1.2 in) thick.[4] The plasmodium eventually transforms into a sponge-like aethalium, analogous to the spore-bearing fruiting body of a mushroom; which then degrades, darkening in color, and releases its dark-colored spores. This species is known to have its spores dispersed by beetles (family Lathridiidae).[5]

Fuligo septica grows on rotten wood and plant debris, but can also grow on the leaves and stems of living plants.[6]

Close-up of the yellow plasmodia

Human pathogenicity

This species is known to cause asthma and allergenic rhinitis in susceptible people.[7][8]

Resistance to metal toxicity

Slime molds have a high resistance to toxic levels of metals; one author was prompted to write "The levels of Zn in Fuligo septica were so high (4,000–20,000 ppm) that it is difficult to understand how a living organism can tolerate them."[9] The resistance to extreme levels of zinc appears to be unique to F. septica.[10] The mechanism of this metal resistance is now understood: F. septica produces a yellow pigment called fuligorubin A, which has been shown to chelate metals and convert them to inactive forms.[11]

Model of RNA processing

Introns are sections of DNA that must be properly cleaved, digested and processed prior to rendering functional rRNAs for protein synthesis. Because it has a large number of group I introns, F. septica is used as a model to understand the processing and evolution of RNA.[12][13]

Bioactive compounds

Extracts from F. septica show antibiotic activity against Bacillus subtilis and Candida albicans, and cytotoxic activity on KB cells (a cell line derived from a human carcinoma of the nasopharynx).[14]

Fuligo septica contains a yellow pigment called fuligorubin A that is thought to be involved in photoreception and in the process of energy conversion during its life cycle.[15]

References

  1. ^ Armstrong M. (2007). Wildlife and Plants. Marshall Cavendish. p. 998. ISBN 0761477101. Retrieved 2010-01-14.
  2. ^ Ainsworth GC. (1976). Introduction to the History of Mycology. Cambridge, UK: Cambridge University Press. p. 60. ISBN 0-521-21013-5. Retrieved 2010-01-14.
  3. ^ Kambly PE. (1939). The color of myxomycete plasmodia. Botany 26(6): 386–390.
  4. ^ "Fuligo septica". Retrieved 2008-12-08.
  5. ^ Blackwell M, Laman TG. (1982). Spore dispersal of Fuligo septica (Myxomycetes) by Lathridiid beetles. Mycotaxon 14(1): 58–60.
  6. ^ Healy RA, Huffman DR., Tiffany LH, Knaphaus G. (2008). Mushrooms and Other Fungi of the Midcontinental United States (Bur Oak Guide). Iowa City: University of Iowa Press. p. 340. ISBN 1-58729-627-6. Retrieved 2010-01-14.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^ Santili J, Rockwell WJ, Collins RP. (1895). The significance of the spore of the Basidiomycetes (Mushrooms and their allies) in bronchial asthma and allergenic rhinitis. Annals of allergy 55: 469–471.
  8. ^ Gianini EH, Northy WT, Leathers CR. (1975). The allergenic significance of certain fungi rarely reported as allergens. Annals of Allergy 35: 372–376.
  9. ^ Setala A, Nuorteva P. (1989). High metal contents found in Fuligo septica L. Wiggers and some other slime molds (Myxomycetes). Karstenia 29(1): 37–44.
  10. ^ Zhulidov DA, Robarts RD, Zhulidov AV, Zhulidova OV, Markelov DA, Rusanov VA, Headley JV (2002). "Zinc accumulation by the slime mold Fuligo septica (L.) Wiggers in the former Soviet Union and North Korea". J. Environ. Qual. 31 (3): 1038–42. doi:10.2134/jeq2002.1038. PMID 12026071. Retrieved 2008-12-08.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Latowski D, Lesiak A, Jarosz-Krzeminska E, Strzalka K. (2008). Fuligo septica, as a new model organism in studies on interaction between metal ions and living cells. Metal ions in Biology and Medicine and Medicine 10: 204–209
  12. ^ Lundblad EW, Einvik C, Rønning S, Haugli K, Johansen S (2004). "Twelve Group I introns in the same pre-rRNA transcript of the myxomycete Fuligo septica: RNA processing and evolution". Mol. Biol. Evol. 21 (7): 1283–93. doi:10.1093/molbev/msh126. PMID 15034133. Retrieved 2008-12-08. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ Haugen P, Coucheron DH, Rønning SB, Haugli K, Johansen S (2003). "The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes". J. Eukaryot. Microbiol. 50 (4): 283–92. doi:10.1111/j.1550-7408.2003.tb00135.x. PMID 15132172. {{cite journal}}: |access-date= requires |url= (help)CS1 maint: multiple names: authors list (link)
  14. ^ Pereira EC, Cavalcanti LDH, Campos-Takaki GMD, Nascimento, Silene CD. (1992). Antibiotic and cytotoxic activities of crude extracts from Fuligo septica (L.) Wigg. and Tubifera microsperma (Berk. and Curt.) Martin (Myxomycetes). Revista de Ciencias Biomedicas 13(0): 23-32.
  15. ^ Rahman A. (1988). Studies in Natural Products Chemistry. Amsterdam: Elsevier. pp. 237–38. ISBN 0-444-51510-0. Retrieved 2010-01-14.