Jump to content

Cloaca

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Timon b (talk | contribs) at 14:50, 12 June 2011 (Undid revision 429172144 by Steven Walling (talk)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An avian cloaca or vent; in this example, a red-tailed hawk (Buteo jamaicensis)
Cloacal opening in an Australian Brushtail Possum By Timon Posted by Timon do not remove

In zoological anatomy, a cloaca is the posterior opening that serves as the only such opening for the intestinal, reproductive, and urinary tracts of certain animal species. All birds, reptiles, and amphibians possess this orifice, from which they excrete both urine and feces, unlike placental mammals, which possess two (or three) separate orifices for evacuation.

The cloacal region is also often associated with a secretory organ, the cloacal gland, which has been implicated in the scent marking behavior of some reptiles, amphibians and monotremes.

Etymology

The word comes from Latin, and means sewer. This was derived from cluō which meant "cleanse". See Wiktionary for more information.

Birds

In birds the cloaca is also referred to as the vent, and among falconers the word vent is also a verb meaning "to defecate". Excretory systems with analogous purpose in certain invertebrates are also sometimes referred to as "cloacae".

Birds also reproduce with this organ; this is known as a cloacal kiss. Birds that mate using this method touch their cloacae together, in some species for only a few seconds, sufficient time for sperm to be transferred from the male to the female.[1] The reproductive system must be re-engorged prior to the mating season of each species. Such regeneration usually takes about a month. Birds generally produce one batch of eggs per year, but they will produce another if the first is taken away. For some birds, such as some species of swans and ducks, the males do not use the cloaca for reproduction but have a phallus.

One study[2] has looked into birds that use their cloaca for cooling (see urohidrosis).[3]

Fish

Among fish, a true cloaca is present only in elasmobranchs (sharks and rays) and lobe-finned fishes. In lampreys and in some ray-finned fishes, part of the cloaca remains in the adult to receive the urinary and reproductive ducts, although the anus always opens separately. In chimaeras and most teleosts, however, all three openings are entirely separate.[4]

Mammals

The only mammals to possess a true cloaca are the monotremes (egg laying mammals) and tenrecs. Even in these animals, the cloaca is partially sub-divided into separate regions for the anus and urethra. In marsupials (and a few birds), the genital tract is separate, but a trace of original cloaca does remain externally.[4] This is one of the features of marsupials and monotremes which suggest their basal nature, as the amniotes from which mammals evolved possessed a cloaca, and the earliest animals to diverge into the mammalian class would likely have had this feature too.

Adult placental mammals have no remaining trace of the cloaca. In the embryo, the embryonic cloaca divides into a posterior region that becomes part of the anus, and an anterior region that has different fates depending on the sex of the individual. In females, it develops into the vestibule that receives the urethra and vagina, while in males it forms the entirety of the penile urethra.[4]

Humans

Human beings only have an embryonic cloaca, which is split up into separate tracts during the development of the urinary and reproductive organs. However, a few human congenital disorders result in persons being born with a cloaca, including persistent cloaca and Sirenomelia (mermaid syndrome).

Reptiles

Some species have modified cloaca for increased gas exchange. See Reptile#Respiration. This is where reproductive activity occurs.

Cloacal respiration

Some turtles, especially those specialized in diving, are highly reliant on cloacal respiration during dives.[5] They accomplish this by having a pair of accessory air bladders connected to the cloaca which can absorb oxygen from the water.[6]

There are also a variety of fishes, as well as polychaete worms and even crabs, that are specialized to take advantage of the constant flow of water through the cloacal respiratory tree of sea cucumbers while simultaneously gaining the protection of living within the sea cucumber itself. At night many of these species emerge from the anus of the sea cucumber in search of food.[7]

References

  1. ^ Lynch, Wayne (2007). "Chapter 5: Family Life". Owls of the United States and Canada. JHU Press. p. 151. ISBN 0801886872.
  2. ^ [1] Hoffman, T.C.M., G.E. Walsberg, and D.F. DeNardo. 2007. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. Journal of Experimental Biology 210: 741-749.
  3. ^ Journal of Experimental Biology 210, 0i (2007) by Yfke Hager
  4. ^ a b c Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 396–399. ISBN 0-03-910284-X.
  5. ^ Herpetologists' League - Aquatic Respiration in Trionyx spinifer asper - William A. Dunson - Herpetologica, Vol. 16, No. 4 (Dec. 30, 1960), pp. 277-283
  6. ^ The Straight Dope - Is it true turtles breathe through their butts?
  7. ^ Aquarium Invertebrates by Rob Toonen, Ph.D.