Jump to content

Extensions of Fisher's method

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bobthefish2 (talk | contribs) at 18:02, 22 September 2011 (Brown's method: Gaussian approximation: tweak). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

(Introductory block)

Dependent statistics

A principle limitation of Fisher's method is its exclusive design to combine independent p-values, which renders it an unreliable technique to combine dependent p-values. To overcome this limitation, a number of methods were developed to extend its utility.

Known covariance

Brown's method: Gaussian approximation

Fisher's method showed that the log-sum of k independent p-values follow a χ2-distribution}} of 2k degrees of freedom:

In the case that these p-values are not independent, Brown proposed the idea of approximating X using a scaled χ²-distribution, 2(k’), with k’ degrees of freedom. This approximation is shown to be accurate up to two moments.

[1]

[2]

Unknown covariance

Kost's method: t approximation

References

  1. ^ Brown, M. (1975). "A method for combining non-independent, one-sided tests of significance". Biometrics. 31: 987–992.
  2. ^ Kost, J.; McDermott, M. (2002). "Combining dependent P-values". Statistics & Probability Letters. 60: 183–190.