User:Garrettsteer
Wikipedia:USEP/Courses/Writing101(UniversityofMontanaWestern) |
Garrett Steerman 10/12/12
During September 11th disasters rescue robots were first really tested. They were sent into the rubble to look for survivors and bodies. The robots had trouble working in the rubble of the World Trade Center and were constantly getting stuck or broken. Since than many new ideas have been formed about rescue robots. Engineers and scientists are trying to change the shapes of the robots and take them from wheels to no wheels. “Strong government funding and support is needed if search and rescued robots are to see widespread use in fewer than 10 years.” (Murphy 16) This means that without the help of government the technology for these devices are not available or they cost t much. These robots are very important in disaster scenarios and are hopefully taking a change for the better.
People like Daniel Goldman, A biophysicist at Georgia Tech, has started building a robot that Piore says “is less like an ATV and more like a sandfish lizard” (14). Goldman has been spending a lot of time researching and studying the movements of sandfish lizards and trying to develop that into his own robotic idea. Piore states that his robot will be able to “burrow deeper or snake its way back to the surface” (14) just like a sandfish lizard. This will be helpful in many disaster scenarios. Goldman is trying to develop this robot to be able to maneuver though such terrain as rubble, like in the World Trade Center disaster.
Rescue robots in development are being made to be able to search, reconnaissance and mapping, removing or shoring up rubble, delivery of supplies, medical treatment, and evacuation of casualties. Even with all these ideas coming about there are still some technical challenges that remain. Robin Murphy, a professor of computer science and engineering, says that “Real disasters are infrequent, and every one is different. The robots never get used exactly the way you think they will, and they keep uncovering new bottlenecks and problems. So it’s an emerging technology.” (15) Murphy states that most rescue robots are not tested in real life situations and more in a situation that the robot can handle. The possible solutions to these problems are what an associate professor of robotics- Howie Choset, is working on. Choset is working on building a “snake robot”. These snake robots are “thin, legless devices with multiple joints”. These snake robots will be used to go places where normal wheeled robots cannot go. The technology still needs some work and the trials they are going through with them aren’t going perfect. Most tests and studies are helping Choset out and are improving these snake robots. “More animal studies would help” says Choset. The robot is based on the snake and its movements but considering the snake is made up of 200 bones and the robot is made up of 15 links it presents a different problem. There are three main levels of challenges. First the information processing of the robot. Second the Mobility of the robot. Third the manipulation of the robot. Bringing these robots into real use and being able to use them in all situations is so close to becoming a reality. “Were just inches away” Murphy says, “a lot of software is just waiting for the hardware to catch up”.
-Piore, Adam. “Lesson Learned: A Better Rescue Bot.” Discover 32.8 (2011): 14.Web. 10 October. 2012.
-Anthes, Gary. “Robots Gear Up for Disaster Response.” Communications of the ACM (2010):15, 16. Web. 10 Oct. 2012