Jump to content

Wikipedia:WikiProject Chemicals/Chembox validation/VerifiedDataSandbox and (E)-Stilbene: Difference between pages

(Difference between pages)
Page 1
Page 2
Content deleted Content added
Saving copy of the {{chembox}} taken from revid 456645501 of page (E)-Stilbene for the Chem/Drugbox validation project (updated: '').
 
 
Line 1: Line 1:
{{For|the class of antioxidant compounds that share the same chemical skeleton|stilbenoid}}
{{ambox | text = This page contains a copy of the infobox ({{tl|chembox}}) taken from revid [{{fullurl:(E)-Stilbene|oldid=456645501}} 456645501] of page [[(E)-Stilbene]] with values updated to verified values.}}
{{DISPLAYTITLE:(''E'')-Stilbene}}
{{chembox
{{chembox
|Verifiedfields = changed
| verifiedrevid = 456494006
|Watchedfields = changed
| Name = (''E'')-Stilbene
|verifiedrevid = 477200997
| ImageFile = Stilbene_trans_structure.svg
|Name = (''E'')-Stilbene
| ImageSize = 150px
|ImageFile = Stilbene_trans_structure.svg
| ImageName = trans-stilbene - skeletal formula
|ImageSize = 150px
| ImageFile1 = Trans-stilbene-from-xtal-3D-balls.png
|ImageName = trans-stilbene - skeletal formula
| ImageSize1 = 200px
| ImageName1 = trans-stilbene - ball-and-stick model
|ImageFile1 = Trans-stilbene-from-xtal-3D-balls.png
|ImageSize1 =
| IUPACName = (''E'')-1,2-Diphenylethene
|ImageName1 = trans-stilbene - ball-and-stick model
| OtherNames = (''E'')-Stilbene, ''trans''-Stilbene, ''trans''-1,2-Diphenylethylene
|IUPACName = (''E'')-Stilbene<ref name="IUPAC2014">{{cite book |author=[[International Union of Pure and Applied Chemistry]] |date=2014 |title=Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 |publisher=[[Royal Society of Chemistry|The Royal Society of Chemistry]] |pages=379 |doi=10.1039/9781849733069 |isbn=978-0-85404-182-4}}</ref>
| Section1 = {{Chembox Identifiers
| PIN = 1,1{{prime}}-[(''E'')-Ethene-1,2-diyl]dibenzene<ref name="IUPAC2014"/>
| InChIKey = PJANXHGTPQOBST-VAWYXSNFBV
| OtherNames = Bibenzylidene<br />''trans''-α,β-Diphenylethylene<br />(''E'')-1,2-Diphenylethylene<br />((1''E'')-2-Phenylvinyl)benzene<br />''trans''-Stilbene<br />[(''E'')-2-Phenylethenyl]benzene
| InChI = 1/C14H12/c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14/h1-12H/b12-11+
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 103-30-0
| Beilstein = 1616740
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 113028
| ChEMBL = 113028
| EC_number = 203-098-5
| Gmelin = 4381
| PubChem = 638088
| PubChem = 638088
| UNII_Ref = {{fdacite|changed|FDA}}
| UNII = 3FA7NW80A0
| UNNumber = 3077
| InChIKey = PJANXHGTPQOBST-VAWYXSNFBV
| InChI = 1/C14H12/c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14/h1-12H/b12-11+
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C14H12/c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14/h1-12H/b12-11+
| StdInChI = 1S/C14H12/c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14/h1-12H/b12-11+
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = PJANXHGTPQOBST-VAWYXSNFSA-N
| StdInChIKey = PJANXHGTPQOBST-VAWYXSNFSA-N
|SMILES = c2(\C=C\c1ccccc1)ccccc2
| CASNo_Ref = {{cascite|correct|CAS}}
|SMILES1 = c1ccc(cc1)/C=C/c2ccccc2
| CASNo = 103-30-0
|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| SMILES = c2(\C=C\c1ccccc1)ccccc2
|ChEBI_Ref = {{ebicite|correct|EBI}}
| SMILES1 = c1ccc(cc1)/C=C/c2ccccc2
|ChEBI = 36007
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|ChemSpiderID = 553649
| ChEBI_Ref = {{ebicite|correct|EBI}}
}}
| ChEBI = 36007
|Section2={{Chembox Properties
| ChemSpiderID = 553649
|C=14 | H=12
}}
|Appearance = Solid
| Section2 = {{Chembox Properties
|Density = 0.9707 g/cm{{sup|3}}
| C=14 | H=12
|Solubility = Practically insoluble
| Appearance = Solid
|MeltingPtC = 122 to 125
| Density = 0.9707 g/cm<sup>3</sup>
|MeltingPt_notes =
| Solubility = Practically insoluble
|BoilingPtC = 305 to 307
| MeltingPt = 122-125 °C
}}
| BoilingPt = 305-307 °C
|Section7={{Chembox Hazards
}}
|FlashPt = >
| Section7 = {{Chembox Hazards
| FlashPt = >112 °C
|FlashPtC = 112
| ExternalMSDS = External MSDS
|ExternalSDS = External MSDS
| NFPA-H = 1 | NFPA-F = 1 | NFPA-R = 0 }}
|NFPA-H = 1 | NFPA-F = 1 | NFPA-R = 0 }}
}}
}}

'''(''E'')-Stilbene''', commonly known as '''''trans''-stilbene''', is an [[organic compound]] represented by the [[Structural formula#Condensed formulas|condensed structural formula]] C{{sub|6}}H{{sub|5}}CH=CHC{{sub|6}}H{{sub|5}}. Classified as a [[diarylethene]], it features a central [[ethylene]] [[moiety (chemistry)|moiety]] with one [[phenyl]] group [[substituent]] on each end of the carbon&ndash;carbon [[double bond]]. It has an [[(E)|(''E'')]] stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its [[geometric isomer]], [[cis-stilbene|''cis''-stilbene]]. ''Trans''-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to ''cis''-stilbene [[photochemistry|photochemically]], and further reacted to produce [[phenanthrene]].

Stilbene was discovered in 1843 by the French chemist [[Auguste Laurent]].<ref>{{cite journal|last1=Laurent|first1=Auguste|title=Mémoire sur la série stilbique|journal=Comptes rendus|date=1843|volume=16|pages=856–860|url=https://books.google.com/books?id=hzEt49manA8C&pg=PA167|trans-title=Memoir on the stilbene series|language=French}} From p. 857: ''"En soumettant ce sulfure à la distillation, il donne plusieurs produits, et entre autres, un composé fort remarquable que je nomme ''stilbène''."''
(On submitting this sulfide [i.e., phenyl thioaldehyde, C{{sub|6}}H{{sub|5}}(CS)H] to [dry] distillation, it gives several products, and among others, a very remarkable compound which I name "stilbene".)</ref> The name "stilbene" is derived from the [[Greek language|Greek]] word ''στίλβω'' (''stilbo''), which means "I shine", on account of the lustrous appearance of the compound.<ref>{{cite book|last1=Miller|first1=William Allen|title=Elements of Chemistry: Theoretical and Practical|date=1880|publisher=Longmans, Green and Co.|location=London, England|page=366|volume=3|edition=5th|url=https://books.google.com/books?id=H4kMAQAAIAAJ&pg=PA366}}</ref>

==Isomers==
[[File:Cis-trans-stilbene.svg|center|400px|thumb|The isomerization of stilbene under the influence of radiation.]]
Stilbene exists as two possible [[stereoisomer]]s. One is ''trans''-1,2-diphenylethylene, called (''E'')-stilbene or ''[[Cis-trans isomerism|trans]]''-stilbene. The second is ''cis''-1,2-diphenylethylene, called [[(Z)-Stilbene|(''Z'')-stilbene]] or ''[[Cis-trans isomerism|cis]]''-stilbene, and is [[sterically hindered]] and less stable because the steric interactions force the aromatic rings out-of-plane and prevent [[Conjugated system|conjugation]].<ref>{{cite book |last1=Eliel |first1=Ernest L. |last2=Wilen |first2=Samuel H. |title=Stereochemistry of Organic Compounds |url=https://archive.org/details/stereochemistryo0000elie_a9t3 |url-access=registration |date=1994 |publisher=John Wiley and Sons |isbn=0-471-01670-5 |pages=[https://archive.org/details/stereochemistryo0000elie_a9t3/page/566 566]-567}}</ref> ''Cis''-stilbene is a liquid at room temperature (melting point: {{convert|5|–|6|C}}), while ''trans''-stilbene is a crystalline solid which does not melt until around {{convert|125|C}}, illustrating the two isomers have significantly different physical properties.<ref name = OrgSynthCis>{{OrgSynth|first1 = Robert E.|last1 = Buckles|first2 = Norris G.|last2 = Wheeler|title = ''cis''-Stilbene|year = 1953|volume = 33|pages = 88|doi = 10.15227/orgsyn.033.0088|prep = CV4P0857|collvol = 4|collvolpages = 857}}</ref><ref name = OrgSynthTrans />

==Preparation and reactions==
Many syntheses have been developed. One popular route entails reduction of [[Benzoin (organic compound)|benzoin]] using zinc amalgam.<ref name = OrgSynthTrans>{{OrgSynth|first1 = R. L.|last1 = Shriner|first2 = Alfred|last2 = Berger|title = ''trans''-Stilbene|year = 1943|volume = 23|pages = 86|doi = 10.15227/orgsyn.023.0086|prep = CV3P0786|collvol = 3|collvolpages = 786}}</ref>

:[[Benzoin (organic compound)|C{{sub|6}}H{{sub|5}}&ndash;CH(OH)&ndash;C(=O)&ndash;C{{sub|6}}H{{sub|5}}]] <chem>->[\ce{Zn(Hg)}][\ce{HCl} \text{, } \ce{CH3CH2OH}]</chem> ''trans''-C{{sub|6}}H{{sub|5}}&ndash;CH=CH&ndash;C{{sub|6}}H{{sub|5}}

Both isomers of stilbene can be produced by decarboxylation of [[alpha-phenylcinnamic acid|α-phenylcinnamic acid]], ''trans''-stilbene being produced from the {{nowrap|(''Z'')-isomer}} of the acid.<ref name = OrgSynthCis />

[[Richard F. Heck]]<ref>{{cite journal|title = Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides|authorlink1 = Richard F. Heck|last1 = Heck|first1 = R. F.|last2 = Nolley|first2 = J. P.|journal = [[J. Org. Chem.]]|year = 1972|volume = 37|issue = 14|pages = 2320–2322|doi = 10.1021/jo00979a024}}</ref> and Tsutomu Mizoroki<ref>{{cite journal|last1 = Mizoroki|first1 = Tsutomu|last2 = Mori|first2 = Kunio|last3 = Ozaki|first3 = Atsumu|journal = [[Bull. Chem. Soc. Jpn.]]|year = 1971|title = Arylation of Olefin with Aryl Iodide Catalyzed by Palladium|volume = 44|issue = 2|page = 581|doi = 10.1246/bcsj.44.581|doi-access = }}</ref> independently reported the synthesis of ''trans''-stilbene by coupling of [[iodobenzene]] and [[styrene]] using a palladium(II) catalyst, in what is now known as the [[Mizoroki-Heck reaction]].<ref>{{cite book|last = Heck|first = Richard F.| title=Organic Reactions | chapter=Palladium-Catalyzed Vinylation of Organic Halides |authorlink = Richard F. Heck |year = 1982|volume = 27|pages = 345–390|doi = 10.1002/0471264180.or027.02|isbn = 0471264180}}</ref><ref>{{cite journal|title = The Heck Reaction as a Sharpening Stone of Palladium Catalysis|authorlink1 = Irina Beletskaya|last1 = Beletskaya|first1 = Irina P.|last2 = Cheprakov|first2 = Andrei V.|journal = [[Chem. Rev.]]|year = 2000|volume = 100|issue = 8|pages = 3009–3066|doi = 10.1021/cr9903048|pmid = 11749313}}</ref> The Mizoroki approach produced the higher yield.

:[[File:Mizoroki 1971 iodobenzene styrene.svg|500px]]

Stilbene undergoes reactions typical of alkenes. ''Trans''-stilbene undergoes epoxidation with [[peroxymonophosphoric acid]], H{{sub|3}}PO{{sub|5}}, producing a 74% yield of ''trans''-stilbene oxide in [[dioxane]].<ref>{{cite journal|title = Oxidation of ''trans''-stilbene with peroxymonophosphoric acid|first1 = Yoshiro|last1 = Ogata|first2 = Kohtaro|last2 = Tomizawa|first3 = Toshiyuki|last3 = Ikeda|journal = [[J. Org. Chem.]]|year = 1979|volume = 44|issue = 14|pages = 2362–2364|doi = 10.1021/jo01328a006}}</ref> The [[epoxide]] product formed is a [[racemic mixture]] of the two [[enantiomers]] of 1,2-diphenyl[[oxirane]]. The [[achiral]] [[meso compound|''meso'' compound]] (1''R'',2''S'')-1,2-diphenyloxirane arises from ''cis''-stilbene, though peroxide epoxidations of the ''cis''-isomer produce both ''cis''- and ''trans''-epoxide products. For example, using [[tert-butyl hydroperoxide|''tert''-butyl hydroperoxide]], oxidation of ''cis''-stilbene produces 0.8% ''cis''-stilbene oxide, 13.5% ''trans''-stilbene oxide, and 6.1% [[benzaldehyde]].<ref>{{cite journal|title = Olefin Epoxidation by Alkyl Hydroperoxide with a Novel Cross-Bridged Cyclam Manganese Complex: Demonstration of Oxygenation by Two Distinct Reactive Intermediates|first1 = Guochuan|last1 = Yin|first2 = Andrew M.|last2 = Danby|first3 = David|last3 = Kitko|first4 = John D.|last4 = Carter|first5 = William M.|last5 = Scheper|first6 = Daryle H.|last6 = Busch|authorlink6 = Daryle H. Busch|journal = [[Inorg. Chem.]]|year = 2007|volume = 46|issue = 6|pages = 2173–2180|doi = 10.1021/ic061957r|pmid = 17295471}}</ref><ref>{{cite book|chapter = Lewis Acid Catalyzed Epoxidation of Olefins Using Hydrogen Peroxide: Growing Prominence and Expanding Range|pages = 119–153|chapter-url = https://books.google.com/books?id=xJpkegngTqAC&pg=PA143|title = Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis|editor-first = S. Ted|editor-last = Oyama|first1 = Daryle H.|last1 = Busch|first2 = Guochuan|last2 = Yin|first3 = Hyun-Jin|last3 = Less|authorlink1 = Daryle H. Busch|publisher = [[Elsevier]]|year = 2011|isbn = 9780080558011}}</ref> Enantiopure stilbene oxide has been prepared by Nobel laureate [[Karl Barry Sharpless]].<ref>{{cite journal|title = Molar Scale Synthesis of Enantiopure Stilbene Oxide|first1 = Han-Ting|last1 = Chang|first2 = K. Barry|last2 = Sharpless|authorlink2 = Karl Barry Sharpless|journal = [[J. Org. Chem.]]|year = 1996|volume = 61|issue = 18|pages = 6456–6457|doi = 10.1021/jo960718q|pmid = 11667495}}</ref>

:[[File:Peroxomonophosphoric acid reaction01.svg|500px]]

Stilbene can be cleanly oxidised to benzaldehyde by [[ozonolysis]]<ref>{{cite journal|title = Mechanisms of ozonolysis. The ''cis'', ''trans''-stilbene system|first1 = Clyde E.|last1 = Bishop|first2 = Donald D.|last2 = Denson|first3 = Paul R.|last3 = Story|journal = [[Tetrahedron Lett.]]|volume = 9|issue = 55|year = 1968|pages = 5739–5742|doi = 10.1016/S0040-4039(00)76338-6}}</ref> or [[Lemieux–Johnson oxidation]], and stronger oxidants such as acidified [[potassium permanganate]] will produce [[benzoic acid]]. [[vicinal (chemistry)|Vicinal]] [[diol]]s can be produced via the [[Upjohn dihydroxylation]] or [[enantioselective]]ly using [[Sharpless asymmetric dihydroxylation]]<ref>{{cite journal|title = Asymmetric dihydroxylation via ligand-accelerated catalysis|first1 = Eric N.|last1 = Jacobsen|first2 = Istvan|last2 = Marko|first3 = William S.|last3 = Mungall|first4 = Georg|last4 = Schroeder|first5 = K. Barry|last5 = Sharpless|authorlink5 = Karl Barry Sharpless|journal = [[J. Am. Chem. Soc.]]|year = 1988|volume = 110|issue = 6|pages = 1968–1970|doi = 10.1021/ja00214a053}}</ref><ref>{{cite journal|title = Catalytic Asymmetric Dihydroxylation|first1 = Hartmuth C.|last1 = Kolb|first2 = Michael S.|last2 = VanNieuwenhze|first3 = K. Barry|last3 = Sharpless|authorlink3 = Karl Barry Sharpless|journal = [[Chem. Rev.]]|year = 1994|volume = 94|issue = 8|pages = 2483–2547|doi = 10.1021/cr00032a009}}</ref> with [[enantiomeric excess]]es as high as 100%.<ref>{{cite journal|title = A Solid-to-Solid Asymmetric Dihydroxylation Procedure for Kilogram-Scale Preparation of Enantiopure Hydrobenzoin|first1 = Zhi-Min|last1 = Wang|first2 = K. Barry|last2 = Sharpless|authorlink2 = Karl Barry Sharpless|journal = [[J. Org. Chem.]]|year = 1994|volume = 59|issue = 26|pages = 8302–8303|doi = 10.1021/jo00105a065}}</ref><ref>{{OrgSynth|title = (''R'',''R'')-1,2-Diphenyl-1,2-ethanediol (Stilbene Diol)|year = 1992|volume = 70|pages = 47|doi = 10.15227/orgsyn.070.0047|prep = CV9P0383|collvol = 9|collvolpages = 383|first1 = Blaine H.|last1 = McKee|first2 = Declan G.|last2 = Gilheany|first3 = K. Barry|last3 = Sharpless|authorlink3 = Karl Barry Sharpless}}</ref><ref>{{cite book|chapter = Asymmetric Hydroxylations|pages = 406–410|chapter-url = https://books.google.com/books?id=BJfbBwAAQBAJ&pg=PA408|title = Stereoselectove Synthesis in Organic Chemistry|author1 = [[Atta-ur-Rahman (chemist)|Atta-ur-Rahman]] |first2 = Zahir|last2 = Shah|publisher = [[Springer-Verlag]]|year = 1993|isbn = 9781461383277}}</ref>

Bromination of ''trans''-stilbene produces predominantly ''meso''-1,2-dibromo-1,2-diphenylethane (sometimes called [[Meso-Stilbene dibromide|''meso''-stilbene dibromide]]), in line with a mechanism involving a cyclic [[bromonium]] ion intermediate of a typical electrophilic [[halogen addition reaction|bromine addition reaction]];<ref name = bromination>{{cite book|chapter = 10.6 &ndash; Bromination of Alkenes|pages = 376–383|chapter-url = https://books.google.com/books?id=8wIQwCmWz9EC&pg=PA376|title = Experimental Organic Chemistry: A Miniscale and Microscale Approach|first1 = John C.|last1 = Gilbert|first2 = Stephen F.|last2 = Martin|authorlink2 = Stephen F. Martin|publisher = [[Cengage Learning]]|year = 2010|edition = 5th|isbn = 9781439049143}}</ref> ''cis''-stilbene yields a [[racemic mixture]] of the two [[enantiomer]]s of 1,2-dibromo-1,2-diphenylethane in a non-polar solvent such as [[carbon tetrachloride]], but the extent of production of the [[meso compound|''meso'' compound]] increases with solvent polarity, with a yield of 90% in [[nitromethane]].<ref>{{cite journal|title = Stereospecificity of the Addition of Bromine to ''cis''- and ''trans''-Stilbene|first1 = Robert E.|last1 = Buckles|first2 = Jane M.|last2 = Bader|first3 = Roland J.|last3 = Thurmaier|journal = [[J. Org. Chem.]]|year = 1962|volume = 27|issue = 12|pages = 4523–4527|doi = 10.1021/jo01059a097}}</ref> The formation of small quantities of the two enantiomers of stilbene dibromide from the ''trans''-isomer suggests that the bromonium ion intermediate exists in [[chemical equilibrium]] with a carbocation intermediate PhCHBr&ndash;C{{sup|+}}(H)Ph with a vacant [[p orbital]] vulnerable to nucleophilic attack from either face.<ref name = bromination /> The addition of bromide or tribromide salts restores much of the stereospecificity even in solvents with a [[dielectric constant]] above 35.<ref>{{cite journal|title = Stereoselectivity and reversibility of electrophilic bromine addition to stilbenes in chloroform: influence of the bromide-tribromide-pentabromide equilibrium in the counteranion of the ionic intermediates|first1 = Roberto|last1 = Bianchini|first2 = Cinzia|last2 = Chiappe|journal = [[J. Org. Chem.]]|year = 1992|volume = 57|issue = 24|pages = 6474–6478|doi = 10.1021/jo00050a021}}</ref>

Upon UV irradiation it converts to ''cis''-stilbene, a classic example of a [[photochemical reaction]] involving [[cis-trans isomerization|''trans''-''cis'' isomerization]], and can undergo further reaction to form [[phenanthrene]].<ref>{{cite journal|title = High level theoretical study of the structure and rotational barriers of ''trans''-stilbene|first1 = S. P.|last1 = Kwasniewski|first2 = L.|last2 = Claes|first3 = J.-P.|last3 = François|first4 = M. S.|last4 = Deleuze|journal = [[J. Chem. Phys.]]|year = 2003|volume = 118|issue = 17|pages = 7823–7836|doi = 10.1063/1.1563617|bibcode = 2003JChPh.118.7823K}}</ref>

:[[File:Stilbene isomerization2.png|800px]]

==Derivatives and uses==
===Synthetic===
(''E'')-Stilbene itself is of little value, but it is a precursor to other derivatives used as [[dye]]s, [[optical brightener]]s, [[phosphor]]s, and [[scintillator]]s.<ref name=Ullmann>{{cite encyclopedia|first1 = Peter F.|last1 = Vogt|first2 = John J.|last2 = Gerulis| title=Amines, Aromatic |encyclopedia = [[Ullmann's Encyclopedia of Industrial Chemistry]]|year = 2000|publisher = [[Wiley-VCH]]|location = Weinheim|doi = 10.1002/14356007.a02_037|isbn = 3527306730}}</ref> Stilbene is one of the [[gain medium]]s used in [[dye laser]]s.<ref name = UllmannDyes />
[[File:Diaminostilbene disulfonic acid.svg|thumb|left|[[4,4'-Diamino-2,2'-stilbenedisulfonic acid|4,4{{prime}}-diamino-2,2{{prime}}-stilbenedisulfonic acid]] is a popular [[optical brightener]] used in some laundry detergents.]]
[[File:Diethylstilbestrol.svg|thumb|left|[[Diethylstilbestrol]] exhibits estrogenic properties, even though it is not a steroid.]]

[[Disodium 4,4'-dinitrostilbene-2,2'-disulfonate]] is prepared by the [[sulfonation]] of [[4-nitrotoluene]] to form 4-nitrotoluene-2-sulfonic acid, which can then be oxidatively coupled using [[sodium hypochlorite]] to form the (''E'')-stilbene [[derivative (chemistry)|derivative]]<ref>{{cite book|title = Systematic Organic Chemistry: Modern Methods of Preparation and Estimation|year = 1926|first1 = William M.|last1 = Cumming|first2 = I. Vance|last2 = Hopper|first3 = T. Sherlock|last3 = Wheeler|page = 314|publisher = [[D. Van Nostrand Company]]|location = New York|chapter = Preparation 294.&mdash;Dinitro-Stilbene-Disulphonic Acid (Na salt)|chapter-url = https://archive.org/details/systematicorgani00cumm_0}}</ref> in a process originally developed by [[Arthur George Green]] and André Wahl in the late nineteenth century.<ref>{{cite journal|title = Ueber die Oxydation von Paranitrotoluolsulfosäure|language = German|trans-title = On the oxidation of ''para''-nitrotoluenesulfonic acid|first1 = Arthur G.|last1 = Green|authorlink1 = Arthur George Green|first2 = André R.|last2 = Wahl|journal = [[Ber. Dtsch. Chem. Ges.]]|year = 1897|volume = 30|issue = 3|pages = 3097–3101|doi = 10.1002/cber.189703003128|url = https://zenodo.org/record/1425882}}</ref><ref>{{cite journal|title = Ueber die Oxydation der Paranitrotoluolsulfosäure|language = German|trans-title = On the oxidation of ''para''-nitrotoluenesulfonic acid|first1 = Arthur G.|last1 = Green|authorlink1 = Arthur George Green|first2 = André R.|last2 = Wahl|journal = [[Ber. Dtsch. Chem. Ges.]]|year = 1898|volume = 31|issue = 1|pages = 1078–1080|doi = 10.1002/cber.189803101195|url = https://zenodo.org/record/1425898}}</ref> Improvements to the process with higher yields have been developed, using air oxidation in liquid ammonia.<ref>{{cite patent|country = US|number = 5041632|status = patent|title = Process for the preparation of 4,4'-dinitrostilbene-2,2-disulfonic acid|pubdate = 1991-08-20|gdate = 1991-08-20|fdate = 1988-06-07|pridate = 1987-08-12|inventor1-last = Guglielmetti|inventor1-first = Leonardo|assign1 = [[Ciba-Geigy|Ciba-Geigy Corporation]]|url = http://www.google.com/patents/US5041632}}</ref> The product is useful as its reaction with [[aniline]] derivatives results in the formation of [[azo dye]]s. Commercially important dyes derived from this compound include Direct Red 76, Direct Brown 78, and Direct Orange 40.<ref name = UllmannDyes>{{cite encyclopedia|first1 = Klaus|last1 = Hunger|first2 = Peter|last2 = Mischke|first3 = Wolfgang|last3 = Rieper|first4 = Roderich|last4 = Raue|first5 = Klaus|last5 = Kunde|first6 = Aloys|last6 = Engel| title=Azo Dyes |encyclopedia = [[Ullmann's Encyclopedia of Industrial Chemistry]]| date=2000 |publisher = [[Wiley-VCH]]|location = Weinheim|doi = 10.1002/14356007.a03_245|isbn = 3527306730}}</ref>

===Natural stilbenes===
The [[stilbenoid]]s are naturally occurring stilbene derivatives. Examples include [[resveratrol]] and its cousin, [[pterostilbene]]. The [[stilbestrol]]s, which are structurally but not synthetically related to (''E'')-stilbene, exhibit [[estrogen]]ic activity. Members of this group include [[diethylstilbestrol]], [[fosfestrol]], and [[dienestrol]]. Some such derivative are produced by [[condensation]] of coenzyme A derivatives of [[cinnamic acid]] or [[4-Hydroxycinnamic acid|4-hydroxycinnamic acid]] and the malonic acid.

==Appendix==
'''Table 1. Vapor pressures'''<ref>{{cite book|last=Lide|first=David|title=CRC Handbook of Chemistry and Physics|edition=76th|date=1995|publisher=CRC Press, Inc.|location=USA|isbn=0-8493-0476-8|pages=6–107}}</ref>
{| class="wikitable"
|-
! Isomer !! Temperature, °C !! Vapor pressure, kPa
|-
| ''cis''-stilbene || 100 || 0.199
|-
| ''cis''-stilbene || 125 || 0.765
|-
| ''cis''-stilbene || 150 || 2.51
|-
| ''trans''-stilbene || 150 || 0.784
|}

==References==
{{Reflist}}

==External links==
* [http://newsearchch.chemexper.com/cheminfo/servlet/org.dbcreator.MainServlet?searchTemplate=rn.value=%3D%3F&action=PowerSearch&format=ccd&options=brandqtyoffer&target=entry&searchValue=103-30-0 (E)-Stilbene on ChemExper]
{{Dye laser}}
{{Authority control}}

{{DEFAULTSORT:Stilbene, (E)-}}
[[Category:Luminescence]]
[[Category:Fluorescent dyes]]
[[Category:Phosphors and scintillators]]
[[Category:Laser gain media]]
[[Category:Stilbenoids]]
[[Category:Phenyl compounds]]