Jump to content

Wikipedia:WikiProject Chemicals/Chembox validation/VerifiedDataSandbox and Carbon dioxide: Difference between pages

(Difference between pages)
Page 1
Page 2
Content deleted Content added
Saving copy of the {{chembox}} taken from revid 476954429 of page Carbon_dioxide for the Chem/Drugbox validation project (updated: '').
 
m Replaced VE ref names using RefRenamernamed citation
 
Line 1: Line 1:
{{Short description|Chemical compound with formula CO₂}}
{{ambox | text = This page contains a copy of the infobox ({{tl|chembox}}) taken from revid [{{fullurl:Carbon_dioxide|oldid=476954429}} 476954429] of page [[Carbon_dioxide]] with values updated to verified values.}}
{{Redirect|CO2}}
{{pp-semi-indef}}
{{Use dmy dates|date=November 2020}}
{{Chembox
{{Chembox
| Verifiedfields = changed
| Watchedfields = changed
| Watchedfields = changed
| verifiedrevid = 464184886
| verifiedrevid = 477004235
| ImageFile1 = Carbon-dioxide-2D-dimensions.svg
| ImageFile1 = Carbon-dioxide-2D-dimensions.svg
| ImageFile1_Ref = {{Chemboximage|correct|??}}
| ImageFile1_Ref = {{chemboximage|correct|??}}
| ImageSize1 = 170
| ImageSize1 = 180
| ImageName1 = Structural formula of carbon dioxide with bond length
| ImageName1 = Structural formula of carbon dioxide with bond length
| ImageFileL1 = Carbon_dioxide_structure.png
| ImageFileL1 = Carbon dioxide 3D ball.png
| ImageFileL1_Ref = {{Chemboximage|correct|??}}
| ImageFileL1_Ref = {{chemboximage|correct|??}}
| ImageNameL1 = Ball-and-stick model of carbon dioxide
| ImageSizeL1 = 121
| ImageFileR1 = Carbon dioxide 3D spacefill.png
| ImageNameL1 = Ball and stick model of carbon dioxide
| ImageFileR1_Ref = {{chemboximage|correct|??}}
| ImageFileR1 = Carbon-dioxide-3D-vdW.svg
| ImageNameR1 = Space-filling model of carbon dioxide
| ImageFileR1_Ref = {{Chemboximage|correct|??}}
| IUPACName = Carbon dioxide
| ImageSizeR1 = 121
| OtherNames = {{ubl|Carbonic acid gas|Carbonic anhydride|Carbonic dioxide|Carbonic oxide|Carbon(IV) oxide|Methanedione|R-744 ([[List of refrigerants|refrigerant]])|R744 (refrigerant alternative spelling)|[[Dry ice]] (solid phase)}}
| ImageNameR1 = Spacefill model of carbon dioxide
|Section1={{Chembox Identifiers
| OtherNames = Carbonic acid gas<br />Carbonic anhydride<br />Carbonic oxide<br />Carbon oxide<br />Carbon(IV) oxide<br />Dry ice (solid phase)
| Section1 = {{Chembox Identifiers
| CASNo = 124-38-9
| CASNo = 124-38-9
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo_Ref = {{cascite|correct|CAS}}
| PubChem = 280
| PubChem = 280
| PubChem_Ref = {{Pubchemcite|correct|PubChem}}
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 1231871
| ChemSpiderID = 274
| ChemSpiderID = 274
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| UNII = 142M471B3J
| UNII = 142M471B3J
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII_Ref = {{fdacite|correct|FDA}}
| EINECS = 204-696-9
| EINECS = 204-696-9
| UNNumber = 1013
| UNNumber = 1013 (gas), 1845 (solid)
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D00004
| KEGG = D00004
Line 33: Line 37:
| ChEBI = 16526
| ChEBI = 16526
| RTECS = FF6400000
| RTECS = FF6400000
| ATCCode_prefix = V03
| ATCCode_suffix = AN02
| Beilstein = 1900390
| Beilstein = 1900390
| Gmelin = 989
| Gmelin = 989
Line 41: Line 43:
| SMILES1 = C(=O)=O
| SMILES1 = C(=O)=O
| StdInChI = 1S/CO2/c2-1-3
| StdInChI = 1S/CO2/c2-1-3
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| InChI = 1/CO2/c2-1-3
| InChI = 1/CO2/c2-1-3
| StdInChIKey = CURLTUGMZLYLDI-UHFFFAOYSA-N
| StdInChIKey = CURLTUGMZLYLDI-UHFFFAOYSA-N
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| InChIKey = CURLTUGMZLYLDI-UHFFFAOYAO}}
| InChIKey = CURLTUGMZLYLDI-UHFFFAOYAO}}
| Section2 = {{Chembox Properties
|Section2={{Chembox Properties
| C = 1
| C=1 | O=2
| O = 2
| ExactMass = 43.989829244 g mol<sup>−1</sup>
| Appearance = Colorless gas
| Appearance = Colorless gas
| Odor = {{ubl|Low concentrations: none|High concentrations: sharp; acidic<ref name=AirProductsMSDS/>}}
| Odor = Odorless
| Density = {{plainlist|
| Density = 1562 kg/m<sup>3</sup> <small>(solid at 1&nbsp;atm and −78.5&nbsp;°C)</small><br />770 kg/m<sup>3</sup> <small>(liquid at 56&nbsp;atm and 20&nbsp;°C)</small><br />1.977&nbsp;kg/m<sup>3</sup> <small>(gas at 1&nbsp;atm and 0&nbsp;°C)</small>
* 1562{{nbsp}}kg/m<sup>3</sup> (solid at {{cvt|1|atm}} and {{cvt|-78.5|°C}})
| Solubility = 1.45 g/L at 25&nbsp;°C, 100 kPa
* 1101{{nbsp}}kg/m<sup>3</sup> (liquid at saturation {{cvt|-37|°C}})
| BoilingPtK = 216.6
* 1.977{{nbsp}}kg/m<sup>3</sup> (gas at {{cvt|1|atm}} and {{cvt|0|°C}})
| Boiling_notes = at 5.185&nbsp;bar
| MeltingPtK = 194.7
| Melting_notes = ''[[Sublimation (chemistry)|subl.]]''
| pKa = 6.35, 10.33
| RefractIndex = 1.1120
| Viscosity = 0.07 [[Poise|cP]] at −78&nbsp;°C
| Dipole = zero
}}
}}
| Solubility = 1.45{{nbsp}}g/L at {{cvt|25|C}}, {{cvt|100|kPa|atm}}
| Section3 = {{Chembox Structure
| SublimationConditions = 194.6855(30) K (−78.4645(30) °C) at 1 atm (0.101325 MPa)
| MolShape = [[Linear (chemistry)|linear]]
| pKa = [[Carbonic acid]]:<br>p''K''<sub>a1</sub> = 3.6<br>p''K''<sub>a1</sub>(apparent) = 6.35<br>p''K''<sub>a2</sub> = 10.33
| RefractIndex = 1.00045
| Viscosity = {{plainlist|
* 14.90 μPa·s at {{cvt|25|°C|K}}<ref>{{cite journal| vauthors = Schäfer M, Richter M, Span R |title=Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa|journal=The Journal of Chemical Thermodynamics|volume=89|year=2015|pages=7–15|doi=10.1016/j.jct.2015.04.015| issn = 0021-9614}}</ref>
* 70{{nbsp}}μPa·s at {{cvt|-78.5|°C|K}}
}}
}}
| VaporPressure = 5.7292(30) MPa, 56.54(30) atm (20 °C (293.15 K))
| Section4 = {{Chembox Thermochemistry
| Dipole = 0{{nbsp}}D
| DeltaHf = −393.5&nbsp;kJ·mol<sup>−1</sup>
| Entropy = 214&nbsp;J·mol<sup>−1</sup>·K<sup>−1</sup>
| MagSus = −20.5·10<sup>−6</sup>{{nbsp}}cm<sup>3</sup>/mol
| ThermalConductivity = 0.01662{{nbsp}}W·m<sup>−1</sup>·K<sup>−1</sup> ({{cvt|300|K}})<ref>{{cite journal| vauthors = Touloukian YS, Liley PE, Saxena SC |title=Thermophysical properties of matter - the TPRC data series|volume=3|journal=Thermal Conductivity - Nonmetallic Liquids and Gases|publisher=Data book|year=1970}}</ref>
| CriticalTP=304.128(15) K<ref name = "Span_1999">{{Cite journal | vauthors = Span R, Wagner W |date=1996-11-01 |title=A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa |journal=Journal of Physical and Chemical Reference Data|volume=25|issue=6|page=1519|doi=10.1063/1.555991|bibcode=1996JPCRD..25.1509S}}</ref> (30.978(15) °C), 7.3773(30) MPa<ref name = "Span_1999" /> (72.808(30) atm)
}}
}}
| Section7 = {{Chembox Hazards
|Section3={{Chembox Structure
| CrystalStruct = Trigonal
| MolShape = [[Linear (chemistry)|Linear]]
}}
|Section5={{Chembox Thermochemistry
| DeltaHf = −393.5{{nbsp}}kJ·mol<sup>−1</sup>
| HeatCapacity = 37.135{{nbsp}}J/(K·mol)
| Entropy = 214{{nbsp}}J·mol<sup>−1</sup>·K<sup>−1</sup>
}}
|Section6={{Chembox Pharmacology
| ATCCode_prefix = V03
| ATCCode_suffix = AN02
}}
|Section7={{Chembox Hazards
| ExternalSDS = [https://www.sigmaaldrich.com/US/en/sds/aldrich/295108 Sigma-Aldrich]
| NFPA-H = 2
| NFPA-H = 2
| NFPA-F = 0
| NFPA-F = 0
| NFPA-R = 0
| NFPA-R = 0
| NFPA-S = SA
| NFPA_ref = <ref name="AG-20180212">{{cite web |title=Safety Data Sheet – Carbon Dioxide Gas – version 0.03 11/11 |url=https://www.airgas.com/msds/001013.pdf |date=12 February 2018 |work=AirGas.com |access-date=4 August 2018 |archive-date=4 August 2018 |archive-url=https://web.archive.org/web/20180804231941/https://www.airgas.com/msds/001013.pdf |url-status=live}}</ref><ref>{{cite web |url= http://www.praxair.com/-/media/documents/sds/carbon-dioxide/liquiflow-liquid-carbon-dioxide-medipure-gas-co2-safety-data-sheet-sds-p4573.pdf?la=en#page=9 |title= Carbon dioxide, refrigerated liquid |work= [[Praxair]] |page= 9 |access-date= 26 July 2018 |archive-url= https://web.archive.org/web/20180729111736/http://www.praxair.com/-/media/documents/sds/carbon-dioxide/liquiflow-liquid-carbon-dioxide-medipure-gas-co2-safety-data-sheet-sds-p4573.pdf?la=en#page=9 |archive-date= 29 July 2018 |url-status= dead}}</ref>
| PEL = TWA 5000{{nbsp}}ppm (9000{{nbsp}}mg/m<sup>3</sup>)<ref name=PGCH>{{PGCH|0103}}</ref>
| IDLH = 40,000{{nbsp}}ppm (72,000{{nbsp}}mg/m<sup>3</sup>)<ref name=PGCH/>
| REL = TWA 5000{{nbsp}}ppm (9000{{nbsp}}mg/m<sup>3</sup>), ST 30,000{{nbsp}}ppm (54,000{{nbsp}}mg/m<sup>3</sup>)<ref name=PGCH/>
| LCLo = 90,000{{nbsp}}ppm (162,000{{nbsp}}mg/m<sup>3</sup>) (human, 5{{nbsp}}min)<ref>{{IDLH|124389|Carbon dioxide}}</ref>
}}
|Section8={{Chembox Related
| OtherAnions = {{ubl|[[Carbon disulfide]]|[[Carbon diselenide]]|[[Carbon ditelluride]]}}
| OtherCations = {{ubl|[[Silicon dioxide]]|[[Germanium dioxide]]|[[Tin dioxide]]|[[Lead dioxide]]|[[Titanium dioxide]]|[[Zirconium dioxide]]|[[Hafnium dioxide]]|[[Cerium dioxide]]|[[Thorium dioxide]]}}
| OtherFunction_label = [[carbon]] [[oxide]]s
| OtherFunction = See [[Oxocarbon]]
| OtherCompounds = {{ubl|[[Carbonic acid]]|[[Carbonyl sulfide]]|[[Carbonyl selenide]]}}
}}
}}
}}
'''Carbon dioxide''' is a [[chemical compound]] with the [[chemical formula]] '''{{chem2|CO2}}'''. It is made up of [[molecule]]s that each have one [[carbon]] atom [[covalent bond|covalently]] [[double bond]]ed to two [[oxygen]] atoms. It is found in the gas state at room temperature, and as the source of available carbon in the [[carbon cycle]], atmospheric {{CO2}} is the primary [[carbon]] source for [[life]] on Earth. In the air, carbon dioxide is transparent to visible light but absorbs [[infrared|infrared radiation]], acting as a [[greenhouse gas]]. Carbon dioxide is soluble in [[water]] and is found in [[groundwater]], [[lake]]s, [[ice cap]]s, and [[seawater]]. When carbon dioxide dissolves in water, it forms [[carbonate]] and mainly [[bicarbonate]] ({{Chem2|HCO3-}}), which causes [[ocean acidification]] as [[Carbon dioxide in Earth's atmosphere|atmospheric {{CO2}}]] levels increase.<ref name="NRC2010">{{cite book |url=http://www.nap.edu/catalog/12904/ocean-acidification-a-national-strategy-to-meet-the-challenges-of |title=Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean |date=22 April 2010 |publisher=National Academies Press |isbn=978-0-309-15359-1 |location=Washington, DC |pages=23–24 |doi=10.17226/12904 |access-date=29 February 2016 |archive-url=https://web.archive.org/web/20160205175823/http://www.nap.edu/catalog/12904/ocean-acidification-a-national-strategy-to-meet-the-challenges-of |archive-date=5 February 2016 |url-status=live}}</ref>
| Section8 = {{Chembox Related

| OtherAnions = [[Carbon disulfide]]<br />[[Carbon diselenide]]
It is a [[trace gas]] [[Carbon dioxide in Earth's atmosphere|in&nbsp;Earth's atmosphere]] at 421&nbsp;[[parts per million]] (ppm){{efn|where "part" here means per [[molecule]]<ref>{{Cite web |date=2022-11-18 |title=CO2 Gas Concentration Defined |url=https://www.co2meter.com/blogs/news/15164297-co2-gas-concentration-defined |access-date=2023-09-05 |website=CO2 Meter |language=en}}</ref>}}, or about 0.04% (as of May 2022) having risen from pre-industrial levels of 280&nbsp;ppm or about 0.025%.<ref name="Cambridge2013">{{cite book| vauthors = Eggleton T |title=A Short Introduction to Climate Change|date=2013|publisher=Cambridge University Press|page=52|url=https://books.google.com/books?id=jeSwRly2M_cC&q=280&pg=PA52|isbn=9781107618763|access-date=9 November 2020}}</ref><ref name=noaa>{{Cite web |title=Carbon dioxide now more than 50% higher than pre-industrial levels {{!}} National Oceanic and Atmospheric Administration |url=https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels |access-date=2022-06-14 |website=www.noaa.gov|date=3 June 2022}}</ref> Burning [[fossil fuel]]s is the primary cause of these increased {{CO2}} concentrations and also the primary cause of [[climate change]].<ref name="AR6 WGIII Ch 13">IPCC (2022) [https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf Summary for policy makers] in [https://www.ipcc.ch/report/ar6/wg3/ Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change], Cambridge University Press, Cambridge, United Kingdom and New York, NY, US</ref>
| OtherCations = [[Silicon dioxide]]<br />[[Germanium dioxide]]<br />[[Tin dioxide]]<br />[[Lead dioxide]]

| Function = [[carbon]] [[oxide]]s
Its [[concentration]] in Earth's pre-industrial atmosphere since late in the [[Precambrian]] was regulated by organisms and geological phenomena. [[Plant]]s, [[algae]] and [[cyanobacteria]] use [[energy]] from [[sunlight]] to synthesize [[carbohydrate]]s from carbon dioxide and water in a process called [[photosynthesis]], which produces oxygen as a waste product.<ref>{{cite book | vauthors = Kaufman DG, Franz CM |title=Biosphere 2000: protecting our global environment |year=1996 |publisher=Kendall/Hunt Pub. Co. |isbn=978-0-7872-0460-0 |url=https://archive.org/details/biosphere2000pro0000kauf}}</ref> In turn, oxygen is consumed and {{CO2}} is released as waste by all [[aerobic organism]]s when they metabolize [[organic compound]]s to produce energy by [[Cellular respiration|respiration]].<ref>{{cite web |url=http://www.legacyproject.org/activities/foodfactories.html |title=Food Factories |website=www.legacyproject.org |access-date=10 October 2011 |archive-date=12 August 2017 |archive-url=https://web.archive.org/web/20170812043852/http://www.legacyproject.org/activities/foodfactories.html |url-status=live}}</ref> {{CO2}} is released from organic materials when they [[decomposition|decay]] or combust, such as in forest fires.
| OtherFunctn = [[Carbon monoxide]]<br />[[Carbon suboxide]]<br />[[Dicarbon monoxide]]<br />[[Carbon trioxide]]

| OtherCpds = [[Carbonic acid]]<br />[[Carbonyl sulfide]]
Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess {{CO2}} emissions to the atmosphere are absorbed by [[carbon fixation|land]] and ocean [[carbon sink]]s.<ref>{{Cite book |chapter= Summary for Policymakers |chapter-url= https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf |archive-url=https://ghostarchive.org/archive/20221010/https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf |archive-date=2022-10-10 |url-status=live |author= IPCC |author-link= IPCC |year= 2021 |title= Climate Change 2021: The Physical Science Basis |pages=20}}</ref> These sinks can become saturated and are volatile, as decay and [[wildfire]]s result in the {{CO2}} being released back into the atmosphere.<ref>{{Cite web |last=Myles |first=Allen |date=September 2020 |title=The Oxford Principles for Net Zero Aligned Carbon Offsetting |url=https://www.smithschool.ox.ac.uk/publications/reports/Oxford-Offsetting-Principles-2020.pdf |url-status=live |archive-url=https://web.archive.org/web/20201002083510/https://www.smithschool.ox.ac.uk/publications/reports/Oxford-Offsetting-Principles-2020.pdf |archive-date=October 2, 2020 |access-date=10 December 2021}}</ref> {{CO2}} is eventually [[Carbon sequestration|sequestered]] (stored for the long term) in rocks and organic deposits like [[coal]], [[petroleum]] and [[natural gas]]. Sequestered {{CO2}} is released into the atmosphere through burning fossil fuels or naturally by [[volcano]]es, [[hot spring]]s, [[geyser]]s, and when [[carbonate rock]]s [[dissolution (chemistry)|dissolve]] in water or react with acids.
}}

}}
{{CO2}} is a versatile industrial material, used, for example, as an inert gas in welding and [[fire extinguisher]]s, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in [[decaffeination]] and [[supercritical drying]].<ref name=Tsotsas>{{cite book |vauthors=Tsotsas E, Mujumdar AS |title=Modern drying technology |series=Vol. 3: Product quality and formulation |date=2011 |publisher=John Wiley & Sons |isbn=978-3-527-31558-1 |url=https://books.google.com/books?id=5210HQIwxzsC&pg=PA185 |access-date=3 December 2019 |archive-url=https://web.archive.org/web/20200321173739/https://books.google.com/books?id=5210HQIwxzsC&pg=PA185 |archive-date=21 March 2020 |url-status=live}}</ref> It is a byproduct of [[fermentation]] of sugars in [[bread]], [[beer]] and [[wine]] making, and is added to [[carbonated beverage]]s like [[Carbonated water|seltzer]] and beer for effervescence. It has a sharp and acidic odor and generates the taste of [[soda water]] in the mouth, but at normally encountered concentrations it is odorless.<ref name=AirProductsMSDS/>
{{TOC limit|3}}

== Chemical and physical properties ==
Carbon dioxide cannot be [[Liquid carbon dioxide|liquefied]] at atmospheric pressure. Low-temperature carbon dioxide is commercially used in its solid form, commonly known as "[[dry ice]]". The solid-to-gas [[phase transition]] occurs at 194.7 Kelvin and is called [[Sublimation (phase transition)|sublimation]].
=== Structure, bonding and molecular vibrations ===
{{See also|Molecular orbital diagram#Carbon dioxide}}
The [[Molecular symmetry|symmetry]] of a carbon dioxide molecule is linear and [[centrosymmetric]] at its equilibrium geometry. The [[bond length|length]] of the [[carbon–oxygen bond]] in carbon dioxide is 116.3&nbsp;[[picometer|pm]], noticeably shorter than the roughly 140&nbsp;pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded [[functional group]]s such as [[carbonyls]].<ref name=Green/> Since it is centrosymmetric, the molecule has no [[electric dipole moment]].

[[File:Co2 vibrations.svg|thumb|left|[[Infrared spectroscopy#Number of vibrational modes|Stretching and bending oscillations]] of the {{CO2}} molecule. Upper left: symmetric stretching. Upper right: antisymmetric stretching. Lower line: degenerate pair of bending modes.]]

As a linear triatomic molecule, {{CO2}} has four [[Molecular vibration|vibrational modes]] as shown in the diagram. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are [[Degenerate energy levels|degenerate]], meaning that they have the same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the [[Infrared spectroscopy|infrared (IR) spectrum]]: the antisymmetric stretching mode at [[wavenumber]] 2349&nbsp;cm<sup>−1</sup> (wavelength 4.25&nbsp;μm) and the degenerate pair of bending modes at 667&nbsp;cm<sup>−1</sup> (wavelength 15&nbsp;μm). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in [[Raman spectroscopy]] at 1388&nbsp;cm<sup>−1</sup> (wavelength 7.2 μm).<ref>{{cite book | vauthors = Atkins P, de Paula J | title = Physical Chemistry | edition = 8th | publisher = W.H. Freeman | date = 2006 | pages = 461, 464 | isbn = 978-0-7167-8759-4}}</ref>

In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep a fixed structure. However, in a [[Coulomb explosion#Coulomb Explosion Imaging|Coulomb explosion imaging]] experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment<ref>{{cite journal | vauthors = Siegmann B, Werner U, Lutz HO, Mann R | title = Complete Coulomb fragmentation of {{CO2}} in collisions with 5.9 MeV u<sup>−1</sup> Xe<sup>18+</sup> and Xe<sup>43+</sup> | journal = J Phys B Atom Mol Opt Phys | volume = 35 | issue = 17 | page = 3755 | year = 2002 | doi = 10.1088/0953-4075/35/17/311 | bibcode = 2002JPhB...35.3755S | s2cid = 250782825}}</ref> has been performed for carbon dioxide. The result of this experiment, and the conclusion of theoretical calculations<ref name=Jensen2020>{{cite journal |vauthors = Jensen P, Spanner M, Bunker PR |title = The {{CO2}} molecule is never linear− |journal = J Mol Struct |volume = 1212 |page = 128087 |year = 2020 |doi = 10.1016/j.molstruc.2020.128087 |bibcode = 2020JMoSt121228087J |hdl = 2142/107329 |hdl-access = free }}</ref> based on an [[Ab initio quantum chemistry methods|ab initio]] [[potential energy surface]] of the molecule, is that none of the molecules in the gas phase are ever exactly linear. This counter-intuitive result is trivially due to the fact that the nuclear motion [[volume element]] vanishes for linear geometries.<ref name=Jensen2020/> This is so for all molecules except [[diatomic molecule]]s.

=== In aqueous solution ===
{{See also|Carbonic acid}}
Carbon dioxide is [[soluble]] in water, in which it reversibly forms {{chem2|H2CO3}} (carbonic acid), which is a [[Acid strength|weak acid]], because its ionization in water is incomplete.
:{{chem2|CO2 + H2O ⇌ H2CO3}}

The [[Henry's law|hydration equilibrium constant]] of carbonic acid is, at 25&nbsp;°C:
:<math chem>K_\mathrm{h} = \frac{\ce{[H2CO3]}}{\ce{[CO2_{(aq)}]}} = 1.70 \times 10^{-3}</math>
Hence, the majority of the carbon dioxide is not converted into carbonic acid, but remains as {{CO2}} molecules, not affecting the pH.

The relative concentrations of {{CO2}}, {{chem2|H2CO3}}, and the [[deprotonation|deprotonated]] forms {{chem2|HCO3-}} ([[bicarbonate]]) and {{chem2|CO3(2-)}}([[carbonate]]) depend on the [[pH]]. As shown in a [[Bjerrum plot]], in neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming the most prevalent (>95%) at the pH of seawater. In very alkaline water (pH > 10.4), the predominant (>50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120&nbsp;mg of bicarbonate per liter.

Being [[diprotic acid|diprotic]], carbonic acid has two [[acid dissociation constant]]s, the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion ({{chem2|HCO3-}}):

:{{chem2|H2CO3 ⇌ HCO3- + H+}}
:''K''<sub>a1</sub> = 2.5 × 10<sup>−4</sup> mol/L; p''K''<sub>a1</sub> = 3.6 at 25&nbsp;°C.<ref name=Green>{{Greenwood&Earnshaw2nd|pages=305–314|name-list-style=vanc}}</ref>
This is the ''true'' first acid dissociation constant, defined as
:<math chem>K_\mathrm{a1} = \frac{\ce{[HCO3- ][H+]}}{\ce{[H2CO3]}}</math>
where the denominator includes only covalently bound {{chem2|H2CO3}} and does not include hydrated {{CO2}}(aq). The much smaller and often-quoted value near 4.16 × 10<sup>−7</sup> (or pK<sub>a1</sub> = 6.38) is an ''apparent'' value calculated on the (incorrect) assumption that all dissolved {{CO2}} is present as carbonic acid, so that
:<math chem>K_\mathrm{a1}{\rm{(apparent)}}=\frac{\ce{[HCO3- ][H+]}}{\ce{[H2CO3] + [CO2_{(aq)}]}}</math>
Since most of the dissolved {{CO2}} remains as {{CO2}} molecules, ''K''<sub>a1</sub>(apparent) has a much larger denominator and a much smaller value than the true ''K''<sub>a1</sub>.<ref>{{cite book | vauthors = Jolly WL | title = Modern Inorganic Chemistry | publisher = McGraw-Hill | date = 1984 | pages = 196 | isbn = 978-0-07-032760-3}}</ref>

The bicarbonate ion is an [[amphoteric]] species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the [[carbonate]] ion ({{chem2|CO3(2-)}}):
:{{chem2|HCO3- ⇌ CO3(2-) + H+}}
:''K''<sub>a2</sub> = 4.69 × 10<sup>−11</sup> mol/L; p''K''<sub>a2</sub> = 10.329


In organisms, carbonic acid production is catalysed by the [[enzyme]] known as [[carbonic anhydrase]].

In addition to altering its acidity, the presence of carbon dioxide in water also affects its electrical properties. [[File:Millipore co2.svg|thumb|400px|Electrical conductivity of carbondioxide saturated desalinated water when heated from 20 to 98&nbsp;°C. The shadowed regions indicate the error bars associated with the measurements. Data on [https://github.com/ddiesing/water/blob/main/millipore-carbon-dioxide-temperataure.csv github ]. A comparison with the temperature dependence of vented desalinated water can be found [https://commons.wikimedia.org/wiki/File:Electric_conduction_of_vented_and_CO2_saturated_desalinated_water_as_function_of_temperature.svg here] .]] When carbon dioxide dissolves in desalinated water, the electrical conductivity increases significantly from below 1 μS/cm to nearly 30 μS/cm. When heated, the water begins to gradually lose the conductivity induced by the presence of <math> \mathrm{CO_{2}} </math> , especially noticeable as temperatures exceed 30&nbsp;°C.

The [[Conductivity (electrolytic)#Conductivity_of_purified_water_in_electrochemical_experiments|temperature dependence]] of the electrical conductivity of fully deionized water without <math>\mathrm{CO_{2}} </math> saturation is comparably low in relation to these data.

=== Chemical reactions ===
{{CO2}} is a potent [[electrophile]] having an electrophilic reactivity that is comparable to [[benzaldehyde]] or strongly electrophilic [[α,β-unsaturated carbonyl compound]]s. However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with {{CO2}} are thermodynamically less favored and are often found to be highly reversible.<ref>{{cite journal | vauthors = Li Z, Mayer RJ, Ofial AR, Mayr H | title = From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes | journal = Journal of the American Chemical Society | volume = 142 | issue = 18 | pages = 8383–8402 | date = May 2020 | pmid = 32338511 | doi = 10.1021/jacs.0c01960 | s2cid = 216557447}}</ref> The reversible reaction of carbon dioxide with [[amine]]s to make [[carbamate]]s is used in {{CO2}} scrubbers and has been suggested as a possible starting point for carbon capture and storage by [[amine gas treating]].
Only very strong nucleophiles, like the [[carbanion]]s provided by [[Grignard reagent]]s and [[organolithium compound]]s react with {{CO2}} to give [[carboxylate]]s:
:{{chem2|MR + CO2 → RCO2M}}
:where M = [[Lithium|Li]] or [[Magnesium|Mg]][[Bromine|Br]] and R = [[alkyl]] or [[aryl]].

In [[metal carbon dioxide complex]]es, {{CO2}} serves as a [[ligand]], which can facilitate the conversion of {{CO2}} to other chemicals.<ref>{{cite book | veditors = Aresta M | date = 2010 | title = Carbon Dioxide as a Chemical Feedstock | publisher = Wiley-VCH | location = Weinheim | isbn = 978-3-527-32475-0}}</ref>

The reduction of {{CO2}} to [[Carbon monoxide|CO]] is ordinarily a difficult and slow reaction:
:{{chem2|CO2 + 2 e- + 2 H+ → CO + H2O}}
The [[redox potential]] for this reaction near pH&nbsp;7 is about −0.53&nbsp;V ''versus'' the [[standard hydrogen electrode]]. The nickel-containing enzyme [[carbon monoxide dehydrogenase]] catalyses this process.<ref>{{cite journal | vauthors = Finn C, Schnittger S, Yellowlees LJ, Love JB | title = Molecular approaches to the electrochemical reduction of carbon dioxide | journal = Chemical Communications | volume = 48 | issue = 10 | pages = 1392–1399 | date = February 2012 | pmid = 22116300 | doi = 10.1039/c1cc15393e | url = https://www.pure.ed.ac.uk/ws/files/10852481/Molecular_approaches_to_the_electrochemical_reduction_of_carbon_dioxide.pdf | access-date = 6 December 2019 | url-status = live | hdl-access = free | archive-date = 19 April 2021 | archive-url = https://web.archive.org/web/20210419185431/https://www.pure.ed.ac.uk/ws/files/10852481/Molecular_approaches_to_the_electrochemical_reduction_of_carbon_dioxide.pdf | hdl = 20.500.11820/b530915d-451c-493c-8251-da2ea2f50912 | s2cid = 14356014}}</ref>

[[Photoautotrophs]] (i.e. [[plant]]s and [[cyanobacteria]]) use the energy contained in sunlight to [[Photosynthesis|photosynthesize]] simple [[sugar]]s from {{CO2}} absorbed from the air and water:
:{{chem2|''n'' CO2 + ''n'' H2O → (CH2O)_{''n''} + ''n'' O2}}

=== Physical properties ===
{{further|Carbon dioxide data}}
[[File:Dry Ice Pellets Subliming.jpg|right|thumb|Pellets of "dry ice", a common form of solid carbon dioxide]]
Carbon dioxide is colorless. At low concentrations, the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor.<ref name=AirProductsMSDS>{{cite web |title=Carbon Dioxide |website=Air Products |url=http://www.airproducts.com/~/media/Files/PDF/company/product-summary-carbon-dioxide.pdf?la=en |access-date=28 April 2017 |archive-date=29 July 2020 |archive-url=https://web.archive.org/web/20200729131131/http://www.airproducts.com/~/media/Files/PDF/company/product-summary-carbon-dioxide.pdf?la=en |url-status=dead}}</ref> At [[standard temperature and pressure]], the density of carbon dioxide is around 1.98&nbsp;kg/m<sup>3</sup>, about 1.53 times that of [[Earth's atmosphere|air]].<ref>{{cite web |url=https://www.engineeringtoolbox.com/gas-density-d_158.html |title=Gases – Densities |publisher=Engineering Toolbox |access-date=21 November 2020 |archive-date=2 March 2006 |archive-url=https://web.archive.org/web/20060302054722/https://www.engineeringtoolbox.com/gas-density-d_158.html |url-status=live}}</ref>

Carbon dioxide has no liquid state at pressures below 0.51795(10) [[MPa]]<ref name = "Span_1999" /> (5.11177(99) [[Standard atmosphere (unit)|atm]]). At a pressure of 1&nbsp;atm (0.101325 MPa), the gas [[deposition (physics)|deposits]] directly to a solid at temperatures below 194.6855(30) K<ref name = "Span_1999" /> (−78.4645(30) °C) and the solid [[sublimation (chemistry)|sublimes]] directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called [[dry ice]].

[[File:Carbon dioxide pressure-temperature phase diagram.svg|right|thumb|upright=1.15|Pressure–temperature [[phase diagram]] of carbon dioxide. Note that it is a log-lin chart.]]

[[Liquid carbon dioxide]] forms only at [[pressure]]s above 0.51795(10) MPa<ref name = "Span_1999" /> (5.11177(99) atm); the [[triple point]] of carbon dioxide is 216.592(3) K<ref name = "Span_1999" /> (−56.558(3) °C) at 0.51795(10) MPa<ref name = "Span_1999" /> (5.11177(99) atm) (see phase diagram). The [[Critical point (thermodynamics)|critical point]] is 304.128(15) K<ref name = "Span_1999" /> (30.978(15) °C) at 7.3773(30) MPa<ref name = "Span_1999" /> (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an [[amorphous]] glass-like solid.<ref>{{cite journal | vauthors = Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA | title = Amorphous silica-like carbon dioxide | journal = Nature | volume = 441 | issue = 7095 | pages = 857–860 | date = June 2006 | pmid = 16778885 | doi = 10.1038/nature04879 | s2cid = 4363092 | bibcode = 2006Natur.441..857S}}</ref> This form of glass, called ''[[amorphous carbonia|carbonia]]'', is produced by [[supercooling]] heated {{CO2}} at extreme pressures (40–48&nbsp;[[GPa]], or about 400,000 atmospheres) in a [[diamond anvil]]. This discovery confirmed the theory that carbon dioxide could exist in a glass state similar to other members of its elemental family, like [[silicon dioxide]] (silica glass) and [[germanium dioxide]]. Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released.

At temperatures and pressures above the critical point, carbon dioxide behaves as a [[supercritical fluid]] known as [[supercritical carbon dioxide]].

{{clear}}

Table of thermal and physical properties of saturated liquid carbon dioxide:<ref name=Holman>{{Cite book |last=Holman |first=Jack P. |title=Heat Transfer |publisher=McGraw-Hill Companies, Inc. |year=2002 |isbn=9780072406559 |edition=9th |location=New York, NY |pages=600–606 |language=English}}</ref><ref name=Incropera>{{Cite book |last1=Incropera |last2=Dewitt |last3=Bergman |last4=Lavigne |first1=Frank P. |first2=David P. |first3=Theodore L. |first4=Adrienne S. |title=Fundamentals of Heat and Mass Transfer |publisher=John Wiley and Sons, Inc. |year=2007 |isbn=9780471457282 |edition=6th |location=Hoboken, NJ |pages=941–950 |language=English}}</ref>
{|class="wikitable mw-collapsible mw-collapsed"
|[[Temperature]] (°C)
|[[Density]] (kg/m<sup>3</sup>)
|[[Specific heat]] (kJ/(kg⋅K))
|[[Kinematic viscosity]] (m<sup>2</sup>/s)
|[[Thermal conductivity]] (W/(m⋅K))
|[[Thermal diffusivity]] (m<sup>2</sup>/s)
|[[Prandtl Number]]
|[[Bulk modulus]] (K^-1){{cln|reason=The unit of measurement of bulk modulus is not 1/K! The value for the bulk modulus of CO2 in this table is in what unit? GPa? MPa? kPa? Please someone clarify this and correct this error!|date=August 2023}}
|-
|−50
|1156.34
|1.84
|1.19 × 10<sup>−7</sup>
|0.0855
|4.02 × 10<sup>−8</sup>
|2.96
|-
|-
|−40
|1117.77
|1.88
|1.18 × 10<sup>−7</sup>
|0.1011
|4.81 × 10<sup>−8</sup>
|2.46
|-
|-
|−30
|1076.76
|1.97
|1.17 × 10<sup>−7</sup>
|0.1116
|5.27 × 10<sup>−8</sup>
|2.22
|-
|-
|−20
|1032.39
|2.05
|1.15 × 10<sup>−7</sup>
|0.1151
|5.45 × 10<sup>−8</sup>
|2.12
|-
|-
|−10
|983.38
|2.18
|1.13 × 10<sup>−7</sup>
|0.1099
|5.13 × 10<sup>−8</sup>
|2.2
|-
|-
|0
|926.99
|2.47
|1.08 × 10<sup>−7</sup>
|0.1045
|4.58 × 10<sup>−8</sup>
|2.38
|-
|-
|10
|860.03
|3.14
|1.01 × 10<sup>−7</sup>
|0.0971
|3.61 × 10<sup>−8</sup>
|2.8
|-
|-
|20
|772.57
|5
|9.10 × 10<sup>−8</sup>
|0.0872
|2.22 × 10<sup>−8</sup>
|4.1
|1.40 × 10<sup>−2</sup>{{cln|reason=The unit of measurement of bulk modulus is not 1/K! The value for the bulk modulus of CO2 in this table is in what unit? GPa? MPa? kPa? Please someone clarify this and correct this error!|date=August 2023}}
|-
|30
|597.81
|36.4
|8.00 × 10<sup>−8</sup>
|0.0703
|0.279 × 10<sup>−8</sup>
|28.7
|-
|}
Table of thermal and physical properties of carbon dioxide ({{CO2}}) at atmospheric pressure:<ref name=Holman/><ref name=Incropera/>
{|class="wikitable mw-collapsible mw-collapsed"
|Temperature (K)
|Density (kg/m<sup>3</sup>)
|Specific heat (kJ/(kg⋅°C))
|[[Dynamic viscosity]] (kg/(m⋅s))
|Kinematic viscosity (m<sup>2</sup>/s)
|Thermal conductivity (W/(m⋅°C))
|Thermal diffusivity (m<sup>2</sup>/s)
|Prandtl Number
|-
|220
|2.4733
|0.783
|1.11 × 10<sup>−5</sup>
|4.49 × 10<sup>−6</sup>
|0.010805
|5.92 × 10<sup>−6</sup>
|0.818
|-
|250
|2.1657
|0.804
|1.26 × 10<sup>−5</sup>
|5.81 × 10<sup>−6</sup>
|0.012884
|7.40 × 10<sup>−6</sup>
|0.793
|-
|300
|1.7973
|0.871
|1.50 × 10<sup>−5</sup>
|8.32 × 10<sup>−6</sup>
|0.016572
|1.06 × 10<sup>−5</sup>
|0.77
|-
|350
|1.5362
|0.9
|1.72 × 10<sup>−5</sup>
|1.12 × 10<sup>−5</sup>
|0.02047
|1.48 × 10<sup>−5</sup>
|0.755
|-
|400
|1.3424
|0.942
|1.93 × 10<sup>−5</sup>
|1.44 × 10<sup>−5</sup>
|0.02461
|1.95 × 10<sup>−5</sup>
|0.738
|-
|450
|1.1918
|0.98
|2.13 × 10<sup>−5</sup>
|1.79 × 10<sup>−5</sup>
|0.02897
|2.48 × 10<sup>−5</sup>
|0.721
|-
|500
|1.0732
|1.013
|2.33 × 10<sup>−5</sup>
|2.17 × 10<sup>−5</sup>
|0.03352
|3.08 × 10<sup>−5</sup>
|0.702
|-
|550
|0.9739
|1.047
|2.51 × 10<sup>−5</sup>
|2.57 × 10<sup>−5</sup>
|0.03821
|3.75 × 10<sup>−5</sup>
|0.685
|-
|600
|0.8938
|1.076
|2.68 × 10<sup>−5</sup>
|3.00 × 10<sup>−5</sup>
|0.04311
|4.48 × 10<sup>−5</sup>
|0.668
|-
|650
|0.8143
|1.1
|2.88 × 10<sup>−5</sup>
|3.54 × 10<sup>−5</sup>
|0.0445
|4.97 × 10<sup>−5</sup>
|0.712
|-
|700
|0.7564
|1.13
|3.05 × 10<sup>−5</sup>
|4.03 × 10<sup>−5</sup>
|0.0481
|5.63 × 10<sup>−5</sup>
|0.717
|-
|750
|0.7057
|1.15
|3.21 × 10<sup>−5</sup>
|4.55 × 10<sup>−5</sup>
|0.0517
|6.37 × 10<sup>−5</sup>
|0.714
|-
|800
|0.6614
|1.17
|3.37 × 10<sup>−5</sup>
|5.10 × 10<sup>−5</sup>
|0.0551
|7.12 × 10<sup>−5</sup>
|0.716
|}

== Biological role ==
Carbon dioxide is an end product of [[cellular respiration]] in organisms that obtain energy by breaking down sugars, fats and [[amino acid]]s with oxygen as part of their [[metabolism]]. This includes all plants, algae and animals and [[aerobic respiration|aerobic]] fungi and bacteria. In [[vertebrate]]s, the carbon dioxide travels in the blood from the body's tissues to the skin (e.g., [[amphibian]]s) or the gills (e.g., [[fish]]), from where it dissolves in the water, or to the lungs from where it is exhaled. During active photosynthesis, [[compensation point|plants can absorb more carbon dioxide from the atmosphere than they release]] in respiration.

=== Photosynthesis and carbon fixation ===
[[File:Calvin-cycle4.svg|thumb|left|upright=1|Overview of the [[Calvin cycle]] and carbon fixation]]
[[Carbon fixation]] is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and cyanobacteria into [[fuel|energy-rich]] organic molecules such as [[glucose]], thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and [[water]] to produce sugars from which other [[organic compound]]s can be constructed, and [[oxygen]] is produced as a by-product.

[[RuBisCO|Ribulose-1,5-bisphosphate carboxylase oxygenase]], commonly abbreviated to RuBisCO, is the [[enzyme]] involved in the first major step of carbon fixation, the production of two molecules of [[3-phosphoglycerate]] from {{CO2}} and [[ribulose bisphosphate]], as shown in the diagram at left.

RuBisCO is thought to be the single most abundant protein on Earth.<ref>{{cite journal |vauthors=Dhingra A, Portis AR, Daniell H |date=April 2004 |title=Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=101 |issue=16 |pages=6315–6320 |bibcode=2004PNAS..101.6315D |doi=10.1073/pnas.0400981101 |pmc=395966 |pmid=15067115 |quote=(Rubisco) is the most prevalent enzyme on this planet, accounting for 30–50% of total soluble protein in the chloroplast |doi-access=free}}</ref>

[[Phototroph]]s use the products of their photosynthesis as internal food sources and as raw material for the [[biosynthesis]] of more complex organic molecules, such as [[polysaccharide]]s, [[nucleic acid]]s, and proteins. These are used for their own growth, and also as the basis of the [[food chain]]s and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the [[coccolithophore]]s synthesise hard [[calcium carbonate]] scales.<ref>{{Cite book |title=Evolution of primary producers in the sea |vauthors=Falkowski P, Knoll AH |date=1 January 2007 |publisher=Elsevier, Academic Press |isbn=978-0-12-370518-1 |oclc=845654016}}</ref> A globally significant species of coccolithophore is ''[[Emiliania huxleyi]]'' whose [[calcite]] scales have formed the basis of many [[sedimentary rock]]s such as [[limestone]], where what was previously atmospheric carbon can remain fixed for geological timescales.[[File:Auto-and heterotrophs.png|thumb|Overview of photosynthesis and respiration. Carbon dioxide (at right), together with water, form oxygen and organic compounds (at left) by [[photosynthesis]] (green), which can be [[cellular respiration|respired]] (red) to water and {{CO2}}.]]

Plants can grow as much as 50% faster in concentrations of 1,000&nbsp;ppm {{CO2}} when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.<ref>{{cite web |date=December 2002 |title=Carbon Dioxide In Greenhouses |url=http://www.omafra.gov.on.ca/english/crops/facts/00-077.htm |url-status=live |archive-url=https://web.archive.org/web/20190429202513/http://www.omafra.gov.on.ca/english/crops/facts/00-077.htm |archive-date=29 April 2019 |access-date=12 June 2007 |vauthors=Blom TJ, Straver WA, Ingratta FJ, Khosla S, Brown W}}</ref> Elevated {{CO2}} levels cause increased growth reflected in the harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated {{CO2}} in FACE experiments.<ref>{{cite journal |vauthors=Ainsworth EA |year=2008 |title=Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration |url=http://www.plant-biotech.dk/Meetings/PBD_Symposium_Plant%20Stress_litterature/LisaAinsworth_pdf2.pdf |journal=Global Change Biology |volume=14 |issue=7 |pages=1642–1650 |bibcode=2008GCBio..14.1642A |doi=10.1111/j.1365-2486.2008.01594.x |archive-url=https://web.archive.org/web/20110719130608/http://www.plant-biotech.dk/Meetings/PBD_Symposium_Plant%20Stress_litterature/LisaAinsworth_pdf2.pdf |archive-date=19 July 2011 |s2cid=19200429}}</ref><ref>{{cite journal |vauthors=Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR |date=June 2006 |title=Food for thought: lower-than-expected crop yield stimulation with rising {{CO2}} concentrations |url=http://www.as.wvu.edu/biology/bio463/Long%20et%20al%202006%20Lower%20yield%20than%20expected%20under%20increased%20CO2.pdf |url-status=live |journal=Science |volume=312 |issue=5782 |pages=1918–1921 |bibcode=2006Sci...312.1918L |citeseerx=10.1.1.542.5784 |doi=10.1126/science.1114722 |pmid=16809532 |archive-url=https://web.archive.org/web/20161020165354/http://www.as.wvu.edu/biology/bio463/Long%20et%20al%202006%20Lower%20yield%20than%20expected%20under%20increased%20CO2.pdf |archive-date=20 October 2016 |access-date=27 October 2017 |s2cid=2232629}}</ref>

Increased atmospheric {{CO2}} concentrations result in fewer stomata developing on plants<ref>{{cite journal |vauthors=Woodward F, Kelly C |year=1995 |title=The influence of {{CO2}} concentration on stomatal density |journal=New Phytologist |volume=131 |issue=3 |pages=311–327 |doi=10.1111/j.1469-8137.1995.tb03067.x |doi-access=free}}</ref> which leads to reduced water usage and increased [[water-use efficiency]].<ref>{{cite journal |vauthors=Drake BG, Gonzalez-Meler MA, Long SP |date=June 1997 |title=More Efficient Plants: A Consequence of Rising Atmospheric {{CO2}}? |journal=Annual Review of Plant Physiology and Plant Molecular Biology |volume=48 |issue=1 |pages=609–639 |doi=10.1146/annurev.arplant.48.1.609 |pmid=15012276 |s2cid=33415877}}</ref> Studies using [[Free-Air Concentration Enrichment|FACE]] have shown that {{CO2}} enrichment leads to decreased concentrations of micronutrients in crop plants.<ref>{{cite journal |vauthors=Loladze I |year=2002 |title=Rising atmospheric {{CO2}} and human nutrition: toward globally imbalanced plant stoichiometry? |journal=Trends in Ecology & Evolution |volume=17 |issue=10 |pages=457–461 |doi=10.1016/S0169-5347(02)02587-9 |s2cid=16074723}}</ref> This may have knock-on effects on other parts of [[ecosystem]]s as herbivores will need to eat more food to gain the same amount of protein.<ref>{{cite journal |vauthors=Coviella CE, Trumble JT |year=1999 |title=Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions |journal=Conservation Biology |volume=13 |issue=4 |pages=700–712 |doi=10.1046/j.1523-1739.1999.98267.x |jstor=2641685 |bibcode=1999ConBi..13..700C |s2cid=52262618}}</ref>

The concentration of secondary [[metabolites]] such as [[phenylpropanoid]]s and [[flavonoid]]s can also be altered in plants exposed to high concentrations of {{CO2}}.<ref>{{Cite journal |vauthors=Davey MP, Harmens H, Ashenden TW, Edwards R, Baxter R |year=2007 |title=Species-specific effects of elevated {{CO2}} on resource allocation in ''Plantago maritima'' and ''Armeria maritima'' |journal=Biochemical Systematics and Ecology |volume=35 |issue=3 |pages=121–129 |doi=10.1016/j.bse.2006.09.004}}</ref><ref>{{cite journal |vauthors=Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R |date=August 2004 |title=Effects of elevated {{CO2}} on the vasculature and phenolic secondary metabolism of Plantago maritima |journal=Phytochemistry |volume=65 |issue=15 |pages=2197–2204 |doi=10.1016/j.phytochem.2004.06.016 |pmid=15587703|bibcode=2004PChem..65.2197D}}</ref>

Plants also emit {{CO2}} during respiration, and so the majority of plants and algae, which use [[C3 photosynthesis]], are only net absorbers during the day. Though a growing forest will absorb many tons of {{CO2}} each year, a mature forest will produce as much {{CO2}} from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants.<ref>{{cite web |title=Global Environment Division Greenhouse Gas Assessment Handbook – A Practical Guidance Document for the Assessment of Project-level Greenhouse Gas Emissions |url=http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2002/09/07/000094946_02081604154234/Rendered/INDEX/multi0page.txt |url-status=dead |archive-url=https://web.archive.org/web/20160603011630/http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2002/09/07/000094946_02081604154234/Rendered/INDEX/multi0page.txt |archive-date=3 June 2016 |access-date=10 November 2007 |publisher=[[World Bank]]}}</ref> Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon<ref>{{cite journal |display-authors=6 |vauthors=Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J |date=September 2008 |title=Old-growth forests as global carbon sinks |url=https://hal-cea.archives-ouvertes.fr/cea-00910763/file/Luyssaert2008.pdf |journal=Nature |volume=455 |issue=7210 |pages=213–215 |bibcode=2008Natur.455..213L |doi=10.1038/nature07276 |pmid=18784722 |s2cid=4424430}}</ref> and remain valuable [[carbon sink]]s, helping to maintain the carbon balance of Earth's atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved {{CO2}} in the upper ocean and thereby promotes the absorption of {{CO2}} from the atmosphere.<ref>{{cite journal |display-authors=6 |vauthors=Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W |date=October 2000 |title=The global carbon cycle: a test of our knowledge of earth as a system |journal=Science |volume=290 |issue=5490 |pages=291–296 |bibcode=2000Sci...290..291F |doi=10.1126/science.290.5490.291 |pmid=11030643 |s2cid=1779934}}</ref>

=== Toxicity ===
{{See also|Carbon dioxide poisoning}}
[[File:Main symptoms of carbon dioxide toxicity.svg|thumb|upright=1.15|left|Symptoms of carbon dioxide toxicity, by increasing [[volume percent]] in air<ref name="friedman">{{cite web |title=Toxicity of Carbon Dioxide Gas Exposure, {{CO2}} Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures |url=http://www.inspect-ny.com/hazmat/CO2gashaz.htm |archive-url=https://web.archive.org/web/20090928073740/http://www.inspect-ny.com/hazmat/CO2gashaz.htm |archive-date=28 September 2009 |work=InspectAPedia |vauthors=Friedman D}}</ref>]]

Carbon dioxide content in fresh air (averaged between sea-level and 10&nbsp;kPa level, i.e., about {{cvt|30|km}} altitude) varies between 0.036% (360&nbsp;ppm) and 0.041% (412&nbsp;ppm), depending on the location.<ref>{{cite web |title=CarbonTracker CT2011_oi (Graphical map of {{CO2}}) |url=http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ |url-status=live |archive-url=https://web.archive.org/web/20210213080315/https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ |archive-date=13 February 2021 |access-date=20 April 2007 |work=esrl.noaa.gov}}</ref>

{{CO2}} is an [[asphyxiant gas]] and not classified as toxic or harmful in accordance with [[Globally Harmonized System of Classification and Labelling of Chemicals|Globally Harmonized System of Classification and Labelling of Chemicals standards]] of [[United Nations Economic Commission for Europe]] by using the [[OECD Guidelines for the Testing of Chemicals]]. In concentrations up to 1% (10,000&nbsp;ppm), it will make some people feel drowsy and give the lungs a stuffy feeling.<ref name="friedman" /> Concentrations of 7% to 10% (70,000 to 100,000&nbsp;ppm) may cause suffocation, even in the presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour.<ref name="USEPA">{{cite news |title=Carbon Dioxide as a Fire Suppressant: Examining the Risks |publisher=U.S. Environmental Protection Agency |url=http://www.epa.gov/ozone/snap/fire/co2/co2report.html |archive-url=https://web.archive.org/web/20151002093443/http://www.epa.gov/ozone/snap/fire/co2/co2report.html |archive-date=2 October 2015}}</ref> The physiological effects of acute carbon dioxide exposure are grouped together under the term [[hypercapnia]], a subset of [[Asphyxiant gas|asphyxiation]].

Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without the dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of [[Goma]] by {{CO2}} emissions from the nearby volcano [[Mount Nyiragongo]].<ref>{{cite web |date=1 November 2005 |title=Volcano Under the City |url=https://www.pbs.org/wgbh/nova/transcripts/3215_volcanoc.html |archive-url=https://web.archive.org/web/20110405155241/http://www.pbs.org/wgbh/nova/transcripts/3215_volcanoc.html |archive-date=5 April 2011 |work=A NOVA Production by Bonne Pioche and Greenspace for WGBH/Boston |publisher=Public Broadcasting System}}.</ref> The [[Swahili language|Swahili]] term for this phenomenon is {{lang|sw|[[mazuku]]}}.

[[File:Apollo13 apparatus.jpg|thumb|Rising levels of {{CO2}} threatened the [[Apollo 13]] astronauts who had to adapt cartridges from the command module to supply the [[carbon dioxide scrubber]] in the [[Apollo Lunar Module]], which they used as a lifeboat.]]
Adaptation to increased concentrations of {{CO2}} occurs in humans, including [[Respiratory adaptation|modified breathing]] and kidney bicarbonate production, in order to balance the effects of blood acidification ([[acidosis]]). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a [[submarine]]) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days.<ref>{{cite report |url=http://archive.rubicon-foundation.org/6045 |title=Carbon Dioxide Tolerance Studies |id=SAM-TR-67-77 |access-date=2 May 2008 |archive-url=https://web.archive.org/web/20080509072828/http://archive.rubicon-foundation.org/6045 |archive-date=9 May 2008 |url-status=usurped |vauthors=Glatte Jr HA, Motsay GJ, Welch BE |year=1967 |series=Brooks AFB, TX School of Aerospace Medicine Technical Report}}</ref><ref>{{cite report |url=http://archive.rubicon-foundation.org/3861 |title=Carbon Dioxide Tolerance and Toxicity |publisher=Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center |id=No. 2-71 |access-date=2 May 2008 |archive-url=https://web.archive.org/web/20110724044527/http://archive.rubicon-foundation.org/3861 |archive-date=24 July 2011 |url-status=usurped |vauthors=Lambertsen CJ |year=1971 |series=IFEM Report}}</ref> Yet, other studies show a decrease in cognitive function even at much lower levels.<ref name="pollutant2012">{{cite journal |vauthors=Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ |date=December 2012 |title=Is {{CO2}} an indoor pollutant? Direct effects of low-to-moderate {{CO2}} concentrations on human decision-making performance |url=http://ehp.niehs.nih.gov/wp-content/uploads/2012/09/ehp.1104789.pdf |url-status=dead |journal=Environmental Health Perspectives |volume=120 |issue=12 |pages=1671–1677 |doi=10.1289/ehp.1104789 |pmc=3548274 |pmid=23008272 |archive-url=https://web.archive.org/web/20160305212909/http://ehp.niehs.nih.gov/wp-content/uploads/2012/09/ehp.1104789.pdf |archive-date=5 March 2016 |access-date=11 December 2014}}</ref><ref name="scores2016">{{cite journal |author-link=Joseph G. Allen |vauthors=Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD |date=June 2016 |title=Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments |journal=Environmental Health Perspectives |volume=124 |issue=6 |pages=805–812 |doi=10.1289/ehp.1510037 |pmc=4892924 |pmid=26502459}}</ref> Also, with ongoing respiratory [[acidosis]], adaptation or compensatory mechanisms will be unable to reverse the condition.

==== Below 1% ====
There are few studies of the health effects of long-term continuous {{CO2}} exposure on humans and animals at levels below 1%. Occupational {{CO2}} exposure limits have been set in the United States at 0.5% (5000&nbsp;ppm) for an eight-hour period.<ref name="inspectpedia">{{cite web |title=Exposure Limits for Carbon Dioxide Gas – {{CO2}} Limits |url=http://www.inspectapedia.com/hazmat/CO2_Exposure_Limits.htm |url-status=live |archive-url=https://web.archive.org/web/20180916235612/https://inspectapedia.com/hazmat/CO2_Exposure_Limits.htm |archive-date=16 September 2018 |access-date=19 October 2014 |publisher=InspectAPedia.com}}</ref> At this {{CO2}} concentration, [[International Space Station]] crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption.<ref>{{cite report |url=http://ston.jsc.nasa.gov/collections/trs/_techrep/TP-2010-216126.pdf |title=In-Flight Carbon Dioxide Exposures and Related Symptoms: Associations, Susceptibility and Operational Implications |id=TP–2010–216126 |access-date=26 August 2014 |archive-url=https://web.archive.org/web/20110627061502/http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2010-216126.pdf |archive-date=27 June 2011 |url-status=dead |vauthors=Law J, Watkins S, Alexander D |year=2010 |series=NASA Technical Report}}</ref> Studies in animals at 0.5% {{CO2}} have demonstrated kidney calcification and bone loss after eight weeks of exposure.<ref>{{cite journal |vauthors=Schaefer KE, Douglas WH, Messier AA, Shea ML, Gohman PA |year=1979 |title=Effect of prolonged exposure to 0.5% {{CO2}} on kidney calcification and ultrastructure of lungs |url=http://handle.dtic.mil/100.2/ADA075625 |url-status=dead |journal=Undersea Biomedical Research |volume=6 |issue=Suppl |pages=S155–S161 |pmid=505623 |archive-url=https://web.archive.org/web/20141019131035/http://handle.dtic.mil/100.2/ADA075625 |archive-date=19 October 2014 |access-date=19 October 2014}}</ref> A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000{{nbsp}}ppm) {{CO2}} likely due to {{CO2}} induced increases in cerebral blood flow.<ref name="pollutant2012" /> Another study observed a decline in basic activity level and information usage at 1000&nbsp;ppm, when compared to 500&nbsp;ppm.<ref name="scores2016" />

However a review of the literature found that a reliable subset of studies on the phenomenon of carbon dioxide induced cognitive impairment to only show a small effect on high-level decision making (for concentrations below 5000 ppm). Most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used.<ref>{{cite journal |vauthors=Du B, Tandoc MC, Mack ML, Siegel JA |date=November 2020 |title=Indoor {{CO2}} concentrations and cognitive function: A critical review |journal=Indoor Air |volume=30 |issue=6 |pages=1067–1082 |doi=10.1111/ina.12706 |pmid=32557862 |bibcode=2020InAir..30.1067D |s2cid=219915861|doi-access=free}}</ref> Similarly a study on the effects of the concentration of {{CO2}} in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of {{CO2}} declined to safe levels (0.2%).<ref>{{Cite web |date=4 June 2019 |title=Ask the doc: Does my helmet make me stupid? - RevZilla |url=https://www.revzilla.com/common-tread/ask-the-doc-does-my-helmet-make-me-stupid |url-status=live |archive-url=https://web.archive.org/web/20210522081133/https://www.revzilla.com/common-tread/ask-the-doc-does-my-helmet-make-me-stupid |archive-date=22 May 2021 |access-date=2021-05-22 |website=www.revzilla.com |vauthors=Kaplan L}}</ref><ref>{{cite journal |vauthors=Brühwiler PA, Stämpfli R, Huber R, Camenzind M |date=September 2005 |title={{CO2}} and {{O2|nolink=no}} concentrations in integral motorcycle helmets |journal=Applied Ergonomics |volume=36 |issue=5 |pages=625–633 |doi=10.1016/j.apergo.2005.01.018 |pmid=15893291}}</ref>

{| class="wikitable"
|+ General guidelines on indoor {{CO2}} concentration effects
! Concentration !! Note
|-
| 280 ppm || Pre-industrial levels
|-
| 421 ppm || Current (May 2022) levels
|-
| 700 ppm || [[ASHRAE]] recommendation<ref>{{Cite web |date=2018 |title=Ventilation for Acceptable Indoor Air Quality |url=https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/62.1-2016/62_1_2016_d_20180302.pdf |url-status=live |access-date=2023-08-10 |issn=1041-2336 |archive-url=https://web.archive.org/web/20221026132957/https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/62.1-2016/62_1_2016_d_20180302.pdf |archive-date=Oct 26, 2022}}</ref>
|-
| 5,000 ppm || USA 8h exposure limit<ref name="inspectpedia"/>
|-
| 10,000 ppm || Cognitive impairment, Canada's long term exposure limit<ref name="friedman" />
|-
| 10,000-20,000 ppm || Drowsiness<ref name="USEPA" />
|-
| 20,000-50,000 ppm || Headaches, sleepiness; poor concentration, loss of attention, slight nausea also possible<ref name="inspectpedia" />
|}

==== Ventilation ====
[[File:CO2Mini monitor TFA Dostmann.jpg|thumb|A [[carbon dioxide sensor]] that measures {{CO2}} concentration using a [[nondispersive infrared sensor]]]]
Poor ventilation is one of the main causes of excessive {{CO2}} concentrations in closed spaces, leading to poor [[indoor air quality]]. Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that {{CO2}} concentration has stabilized) are sometimes used to estimate ventilation rates per person.<ref>{{Cite web |title=Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation |url=https://www.astm.org/d6245-98.html |access-date=2024-06-12 |website=www.astm.org |language=en}}</ref> Higher {{CO2}} concentrations are associated with occupant health, comfort and performance degradation.<ref>{{cite journal |vauthors=Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD |date=June 2016 |title=Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments |journal=Environmental Health Perspectives |volume=124 |issue=6 |pages=805–812 |doi=10.1289/ehp.1510037 |pmc=4892924 |pmid=26502459}}</ref><ref>{{Cite web |date=26 October 2015 |title=Exclusive: Elevated {{CO2}} Levels Directly Affect Human Cognition, New Harvard Study Shows |url=https://thinkprogress.org/exclusive-elevated-co2-levels-directly-affect-human-cognition-new-harvard-study-shows-2748e7378941/ |url-status=live |archive-url=https://web.archive.org/web/20191009092140/https://thinkprogress.org/exclusive-elevated-co2-levels-directly-affect-human-cognition-new-harvard-study-shows-2748e7378941/ |archive-date=9 October 2019 |access-date=14 October 2019 |website=ThinkProgress |vauthors=Romm J}}</ref> [[ASHRAE]] Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100&nbsp;ppm above ambient outdoor conditions. Thus if the outdoor concentration is 400&nbsp;ppm, indoor concentrations may reach 2,500&nbsp;ppm with ventilation rates that meet this industry consensus standard. Concentrations in poorly ventilated spaces can be found even higher than this (range of 3,000 or 4,000&nbsp;ppm).

Miners, who are particularly vulnerable to gas exposure due to insufficient ventilation, referred to mixtures of carbon dioxide and nitrogen as "[[blackdamp]]", "choke damp" or "stythe". Before more effective technologies were developed, [[miners]] would frequently monitor for dangerous levels of blackdamp and other gases in mine shafts by bringing a caged [[Domestic Canary|canary]] with them as they worked. The canary is more sensitive to asphyxiant gases than humans, and as it became unconscious would stop singing and fall off its perch. The [[Davy lamp]] could also detect high levels of blackdamp (which sinks, and collects near the floor) by burning less brightly, while [[methane]], another suffocating gas and explosion risk, would make the lamp burn more brightly.

In February 2020, three people died from suffocation at a party in Moscow when dry ice (frozen {{CO2}}) was added to a swimming pool to cool it down.<ref>{{cite web |date=29 February 2020 |title=Three die in dry-ice incident at Moscow pool party |url=https://www.bbc.co.uk/news/world-europe-51680049 |archive-url=https://web.archive.org/web/20200229151448/https://www.bbc.co.uk/news/world-europe-51680049 |archive-date=29 February 2020 |work=BBC News |quote=The victims were connected to Instagram influencer Yekaterina Didenko.}}</ref> A similar accident occurred in 2018 when a woman died from {{CO2}} fumes emanating from the large amount of dry ice she was transporting in her car.<ref>{{Cite web |date=2 August 2018 |title=A Woman Died from Dry Ice Fumes. Here's How It Can Happen |url=https://www.livescience.com/63241-dry-ice-death.html |url-status=live |archive-url=https://web.archive.org/web/20210522082215/https://www.livescience.com/63241-dry-ice-death.html |archive-date=22 May 2021 |access-date=2021-05-22 |website=Live Science |language=en |vauthors=Rettner R}}</ref>
{{clear}}

==== Indoor air ====
Humans spend more and more time in a confined atmosphere (around 80-90% of the time in a building or vehicle). According to the French [[Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail|Agency for Food, Environmental and Occupational Health & Safety]] (ANSES) and various actors in France, the {{CO2}} rate in the indoor air of buildings (linked to human or animal occupancy and the presence of [[combustion]] installations), weighted by air renewal, is "usually between about 350 and 2,500 ppm".<ref>{{Cite report |url=https://www.anses.fr/en/system/files/AIR2012sa0093Ra.pdf |title=Concentrations de CO2 dans l'air intérieur et effets sur la santé |date=July 2013 |publisher=ANSES |pages=294 |language=fr}}</ref>

In homes, schools, nurseries and offices, there are no systematic relationships between the levels of {{CO2}} and other pollutants, and indoor {{CO2}} is statistically not a good predictor of pollutants linked to outdoor road (or air, etc.) traffic.<ref>{{Cite journal |last1=Chatzidiakou |first1=Lia |last2=Mumovic |first2=Dejan |last3=Summerfield |first3=Alex |date=March 2015 |title=Is CO 2 a good proxy for indoor air quality in classrooms? Part 1: The interrelationships between thermal conditions, CO 2 levels, ventilation rates and selected indoor pollutants |url=http://journals.sagepub.com/doi/10.1177/0143624414566244 |journal=Building Services Engineering Research and Technology |language=en |volume=36 |issue=2 |pages=129–161 |doi=10.1177/0143624414566244 |s2cid=111182451 |issn=0143-6244}}</ref> {{CO2}} is the parameter that changes the fastest (with hygrometry and oxygen levels when humans or animals are gathered in a closed or poorly ventilated room). In poor countries, many open hearths are sources of {{CO2}} and CO emitted directly into the living environment.<ref>{{Cite journal |last1=Cetin |first1=Mehmet |last2=Sevik |first2=Hakan |date=2016 |title=INDOOR QUALITY ANALYSIS OF CO2 FOR KASTAMONU UNIVERSITY |url=http://www.universitypublications.net/proceedings/0903/pdf/H6V141.pdf |journal=Conference of the International Journal of Arts & Sciences |volume=9 |issue=3 |pages=71}}</ref>

==== Outdoor areas with elevated concentrations ====
Local concentrations of carbon dioxide can reach high values near strong sources, especially those that are isolated by surrounding terrain. At the Bossoleto hot spring near [[Rapolano Terme]] in [[Tuscany]], Italy, situated in a bowl-shaped depression about {{cvt|100|m}} in diameter, concentrations of {{CO2}} rise to above 75% overnight, sufficient to kill insects and small animals. After sunrise the gas is dispersed by convection.<ref>{{Cite book |title=Plant responses to elevated {{CO2}}: Evidence from natural springs |vauthors=van Gardingen PR, Grace J, Jeffree CE, Byari SH, Miglietta F, Raschi A, Bettarini I |publisher=Cambridge University Press |year=1997 |isbn=978-0-521-58203-2 |veditors=Raschi A, Miglietta F, Tognetti R, van Gardingen PR |location=Cambridge |pages=69–86 |chapter=Long-term effects of enhanced {{CO2}} concentrations on leaf gas exchange: research opportunities using {{CO2}} springs}}</ref> High concentrations of {{CO2}} produced by disturbance of deep lake water saturated with {{CO2}} are thought to have caused 37 fatalities at [[Lake Monoun]], [[Cameroon]] in 1984 and 1700 casualties at [[Lake Nyos]], Cameroon in 1986.<ref>{{Cite book |title=Plant responses to elevated {{CO2}}: Evidence from natural springs |vauthors=Martini M |publisher=Cambridge University Press |year=1997 |isbn=978-0-521-58203-2 |veditors=Raschi A, Miglietta F, Tognetti R, van Gardingen PR |location=Cambridge |pages=69–86 |chapter={{CO2}} emissions in volcanic areas: case histories and hazards}}</ref>

== Human physiology ==

=== Content ===
{| class="wikitable floatright" style="text-align: center;"
|+[[Reference range]]s or averages for [[partial pressure of carbon dioxide|partial pressures of carbon dioxide]] (abbreviated [[PCO2|p{{CO2}}]])
|-
! Blood compartment
! ([[kilopascal|kPa]])
! ([[mm Hg]])
|-
| [[vein|Venous]] blood carbon dioxide
| {{convert|41–51|mmHg|kPa|order=flip|disp=tablecen}}<ref name=brookside>{{cite web |title=ABG (Arterial Blood Gas) |website=Brookside Associates |url=http://www.brooksidepress.org/Products/OperationalMedicine/DATA/operationalmed/Lab/ABG_ArterialBloodGas.htm |access-date=2 January 2017 |archive-date=12 August 2017 |archive-url=https://web.archive.org/web/20170812201558/http://www.brooksidepress.org/Products/OperationalMedicine/DATA/operationalmed/Lab/ABG_ArterialBloodGas.htm |url-status=live}}</ref>
|-
| Alveolar [[pulmonary gas pressures|pulmonary<br />gas pressures]]
| {{convert|36|mmHg|kPa|order=flip|disp=tablecen}}
|-
| [[Arterial blood gas#carbon dioxide|Arterial blood carbon dioxide]]
| {{convert|35–45|mmHg|kPa|order=flip|disp=tablecen}}<ref name=brookside/>
|}

The body produces approximately {{convert|2.3|lb|kg}} of carbon dioxide per day per person,<ref>{{cite web |title=How much carbon dioxide do humans contribute through breathing? |url=http://www.epa.gov/climatechange/fq/emissions.html |archive-url=https://web.archive.org/web/20110202140715/http://www.epa.gov/climatechange/fq/emissions.html |archive-date=2 February 2011 |access-date=30 April 2009 |work=EPA.gov}}</ref> containing {{convert|0.63|lb|g}} of carbon. {{anchor|partial pressure}} In humans, this carbon dioxide is carried through the [[venous system]] and is breathed out through the lungs, resulting in lower concentrations in the [[arteries]]. The carbon dioxide content of the blood is often given as the [[partial pressure]], which is the pressure which carbon dioxide would have had if it alone occupied the volume.<ref>{{cite book |url=https://archive.org/details/chemistry00henr |title=Chemistry |vauthors=Henrickson C |publisher=Cliffs Notes |year=2005 |isbn=978-0-7645-7419-1}}</ref> In humans, the blood carbon dioxide contents are shown in the adjacent table.

=== Transport in the blood ===
{{CO2}} is carried in blood in three different ways. Exact percentages vary between arterial and venous blood.
* Majority (about 70% to 80%) is converted to [[bicarbonate]] ions {{chem2|HCO3-}} by the enzyme [[carbonic anhydrase]] in the red blood cells,<ref name="solarnav">{{cite web |title=Carbon dioxide |url=http://www.solarnavigator.net/solar_cola/carbon_dioxide.htm |url-status=dead |archive-url=https://web.archive.org/web/20080914125551/http://www.solarnavigator.net/solar_cola/carbon_dioxide.htm |archive-date=14 September 2008 |access-date=12 October 2007 |publisher=solarnavigator.net}}</ref> by the reaction:
:{{chem2|CO2 + H2O → H2CO3 → H+ + HCO3-}}
* 5–10% is dissolved in [[blood plasma]]<ref name="solarnav" />
* 5–10% is bound to [[hemoglobin]] as [[carbamino]] compounds<ref name="solarnav" />

[[Hemoglobin]], the main oxygen-carrying molecule in [[red blood cell]]s, carries both oxygen and carbon dioxide. However, the {{CO2}} bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of [[allosteric regulation|allosteric]] effects on the hemoglobin molecule, the binding of {{CO2}} decreases the amount of oxygen that is bound for a given partial pressure of oxygen. This is known as the [[Haldane Effect]], and is important in the transport of carbon dioxide from the tissues to the lungs. Conversely, a rise in the partial pressure of {{CO2}} or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the [[Bohr effect]].

=== Regulation of respiration ===
Carbon dioxide is one of the mediators of local [[autoregulation]] of blood supply. If its concentration is high, the [[capillaries]] expand to allow a greater blood flow to that tissue.<ref>{{cite journal |last1=Battisti-Charbonney |first1=A. |last2=Fisher |first2=J. |last3=Duffin |first3=J. |date=15 Jun 2011 |title=The cerebrovascular response to carbon dioxide in humans |journal=J. Physiol. |volume=589 |issue=12 |pages=3039–3048 |doi=10.1113/jphysiol.2011.206052 |pmc=3139085 |pmid=21521758}}</ref>

Bicarbonate ions are crucial for regulating blood pH. A person's breathing rate influences the level of {{CO2}} in their blood. Breathing that is too slow or shallow causes [[respiratory acidosis]], while breathing that is too rapid leads to [[hyperventilation]], which can cause [[alkalosis|respiratory alkalosis]].<ref>{{cite journal |last1=Patel |first1=S. |last2=Miao |first2=J.H. |last3=Yetiskul |first3=E. |last4=Anokhin |first4=A. |last5=Majmunder |first5=S.H. |year=2022 |title=Physiology, Carbon Dioxide Retention |url=https://www.ncbi.nlm.nih.gov/books/NBK482456/ |publisher=National Center for Biotechnology Information, NIH |pmid=29494063 |access-date=20 August 2022 |website=National Library of Medicine}}</ref>

Although the body requires oxygen for metabolism, low oxygen levels normally do not stimulate breathing. Rather, breathing is stimulated by higher carbon dioxide levels. As a result, breathing low-pressure air or a gas mixture with no oxygen at all (such as pure nitrogen) can lead to loss of consciousness without ever experiencing [[air hunger]]. This is especially perilous for high-altitude fighter pilots. It is also why flight attendants instruct passengers, in case of loss of cabin pressure, to apply the [[oxygen mask]] to themselves first before helping others; otherwise, one risks losing consciousness.<ref name="solarnav" />

The respiratory centers try to maintain an arterial {{CO2}} pressure of 40&nbsp;[[mmHg]]. With intentional hyperventilation, the {{CO2}} content of arterial blood may be lowered to 10–20&nbsp;mmHg (the oxygen content of the blood is little affected), and the respiratory drive is diminished. This is why one can hold one's breath longer after hyperventilating than without hyperventilating. This carries the risk that unconsciousness may result before the need to breathe becomes overwhelming, which is why hyperventilation is particularly dangerous before free diving.<ref>{{cite journal |last1=Wilmshurst |first1=Peter |date=1998 |title=ABC of oxygen |journal=BMJ |volume=317 |issue=7164 |pages=996–999 |doi=10.1136/bmj.317.7164.996 |pmc=1114047 |pmid=9765173}}</ref>

== Concentrations and role in the environment ==

=== Atmosphere ===
{{Further|Carbon cycle}}
{{excerpt|Carbon dioxide in Earth's atmosphere}}
[[File:Global carbon budget components.png|thumb|right|upright=1.35|Annual {{CO2}} flows from anthropogenic sources (left) into Earth's atmosphere, land, and ocean sinks (right) since the 1960s. Units in equivalent gigatonnes carbon per year.<ref name="gcb19">{{cite journal |display-authors=6 |vauthors=Friedlingstein P, Jones MW, O'sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker DC, Canadell JG, Ciais P, Jackson RB, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini LP, Currie KI, Feely RA, Gehlen M, Gilfillan D, Gkritzalis T, Goll DS |year=2019 |title=Global Carbon Budget 2019 |journal=Earth System Science Data |volume=11 |issue=4 |pages=1783–1838 |bibcode=2019ESSD...11.1783F |doi=10.5194/essd-11-1783-2019 |doi-access=free|hdl=20.500.11850/385668 |hdl-access=free}}.</ref>]]

=== Oceans ===
{{Main|Carbon cycle|Ocean acidification}}

==== Ocean acidification ====

Carbon dioxide dissolves in the ocean to form carbonic acid ({{chem2|H2CO3}}), bicarbonate ({{chem2|HCO3-}}), and carbonate ({{chem2|CO3(2-)}}). There is about fifty times as much carbon dioxide dissolved in the oceans as exists in the atmosphere. The oceans act as an enormous [[carbon sink]], and have taken up about a third of {{CO2}} emitted by human activity.<ref>{{cite web |date=29 November 2006 |title=How Long Can the Ocean Slow Global Warming? |url=http://www.whoi.edu/oceanus/viewArticle.do?id=17726 |url-status=live |archive-url=https://web.archive.org/web/20080104004633/http://www.whoi.edu/oceanus/viewArticle.do?id=17726 |archive-date=4 January 2008 |access-date=21 November 2007 |publisher=Oceanus |vauthors=Doney SC, Levine NM}}</ref>

{{excerpt|ocean acidification|paragraphs=1-2|file=no}}
[[File:Pterapod shell dissolved in seawater adjusted to an ocean chemistry projected for the year 2100.jpg|thumb|left|upright=1.35|Pterapod shell dissolved in seawater adjusted to an [[ocean chemistry]] projected for the year 2100]]
{{excerpt|Ocean acidification#Decreased calcification in marine organisms|paragraphs=1-2|file=no}}

==== Hydrothermal vents ====
Carbon dioxide is also introduced into the oceans through hydrothermal vents. The ''Champagne'' hydrothermal vent, found at the Northwest Eifuku volcano in the [[Mariana Trench]], produces almost pure liquid carbon dioxide, one of only two known sites in the world as of 2004, the other being in the [[Okinawa Trough]].<ref>{{cite journal |display-authors=6 |vauthors=Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Olson E, Proskurowski G, Resing J, Roe K, Greene R, Lebon G |year=2004 |title=Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc |journal=American Geophysical Union |volume=2004 |issue=Fall Meeting |at=V43F–08 |bibcode=2004AGUFM.V43F..08L}}</ref> The finding of a submarine lake of liquid carbon dioxide in the Okinawa Trough was reported in 2006.<ref>{{cite journal |display-authors=6 |vauthors=Inagaki F, Kuypers MM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, Ohkubo S, Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jørgensen BB, Horikoshi K, Boetius A |date=September 2006 |title=Microbial community in a sediment-hosted {{CO2}} lake of the southern Okinawa Trough hydrothermal system |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=103 |issue=38 |pages=14164–14169 |bibcode=2006PNAS..10314164I |doi=10.1073/pnas.0606083103 |pmc=1599929 |pmid=16959888 |doi-access=free}} Videos can be downloaded at {{cite web |title=Supporting Information |url=http://www.pnas.org/content/103/38/14164.full?tab=ds |archive-url=https://web.archive.org/web/20181019001732/http://www.pnas.org/content/103/38/14164.full?tab=ds |archive-date=19 October 2018}}</ref>

== Production ==

=== Biological processes ===
Carbon dioxide is a by-product of the [[Fermentation (biochemistry)|fermentation]] of sugar in the [[brewing]] of [[beer]], [[whisky]] and other [[alcoholic beverage]]s and in the production of [[bioethanol]]. [[Yeast]] metabolizes sugar to produce {{CO2}} and [[ethanol]], also known as alcohol, as follows:
:{{chem2|C6H12O6 → 2 CO2 + 2 CH3CH2OH}}

All [[cellular respiration|aerobic]] organisms produce {{CO2}} when they oxidize [[carbohydrate]]s, [[fatty acid]]s, and [[protein]]s. The large number of reactions involved are exceedingly complex and not described easily. Refer to [[cellular respiration]], [[anaerobic respiration]] and [[photosynthesis]]. The equation for the respiration of glucose and other [[monosaccharide]]s is:
:{{chem2|C6H12O6 + 6 O2 → 6 CO2 + 6 H2O}}

[[Anaerobic organisms]] decompose organic material producing methane and carbon dioxide together with traces of other compounds.<ref>{{cite web |date=11 January 2017 |title=Collecting and using biogas from landfills |url=http://www.eia.gov/Energyexplained/?page=biomass_biogas |url-status=live |archive-url=https://web.archive.org/web/20180711073415/https://www.eia.gov/Energyexplained/?page=biomass_biogas |archive-date=11 July 2018 |access-date=22 November 2015 |publisher=U.S. Energy Information Administration}}</ref> Regardless of the type of organic material, the production of gases follows well defined [[chemical kinetics|kinetic pattern]]. Carbon dioxide comprises about 40–45% of the gas that emanates from decomposition in landfills (termed "[[landfill gas]]"). Most of the remaining 50–55% is methane.<ref>{{cite web |date=January 2000 |title=Facts About Landfill Gas |url=http://www.dem.ri.gov/programs/benviron/waste/central/lfgfact.pdf |url-status=live |archive-url=https://web.archive.org/web/20150923213448/http://www.dem.ri.gov/programs/benviron/waste/central/lfgfact.pdf |archive-date=23 September 2015 |access-date=4 September 2015 |publisher=U.S. Environmental Protection Agency}}</ref>

=== Industrial processes ===
{{anchor|CO2 production}}Carbon dioxide can be obtained by [[distillation]] from air, but the method is inefficient. Industrially, carbon dioxide is predominantly an unrecovered waste product, produced by several methods which may be practiced at various scales.<ref name="kirk">{{cite encyclopedia| vauthors = Pierantozzi R |encyclopedia = Kirk-Othmer Encyclopedia of Chemical Technology|publisher = Wiley|year = 2001|doi = 10.1002/0471238961.0301180216090518.a01.pub2|chapter = Carbon Dioxide|isbn =978-0-471-23896-6}}</ref>

==== Combustion ====
The [[combustion]] of all [[carbon-based fuel]]s, such as [[methane]] ([[natural gas]]), petroleum distillates ([[gasoline]], [[Diesel fuel|diesel]], [[kerosene]], [[propane]]), coal, wood and generic organic matter produces carbon dioxide and, except in the case of pure carbon, water. As an example, the chemical reaction between methane and [[oxygen]]:
:{{chem2|CH4 + 2 O2 → CO2 + 2 H2O}}

[[Iron]] is reduced from its oxides with [[coke (fuel)|coke]] in a [[blast furnace]], producing [[pig iron]] and carbon dioxide:<ref>
{{Cite book | vauthors = Strassburger J | title = Blast Furnace Theory and Practice | publisher = American Institute of Mining, Metallurgical, and Petroleum Engineers | place = New York | year = 1969 | isbn = 978-0-677-10420-1}}</ref>
:{{chem2|Fe2O3 + 3 CO → 3 CO2 + 2 Fe}}

==== By-product from hydrogen production ====
Carbon dioxide is a byproduct of the industrial production of hydrogen by [[steam reforming]] and the [[water gas shift reaction]] in [[ammonia production]]. These processes begin with the reaction of water and natural gas (mainly methane).<ref>{{cite book |doi=10.1002/14356007.a05_165|chapter=Carbon Dioxide|title=Ullmann's Encyclopedia of Industrial Chemistry|year=2000| vauthors = Topham S |isbn=3527306730}}</ref> This is a major source of food-grade carbon dioxide for use in carbonation of [[beer]] and [[soft drink]]s, and is also used for stunning animals such as [[poultry]]. In the summer of 2018 a shortage of carbon dioxide for these purposes arose in Europe due to the temporary shut-down of several ammonia plants for maintenance.<ref>{{cite news |title={{CO2}} shortage: Food industry calls for government action |url=https://www.bbc.com/news/business-44559669 |agency=BBC |date=21 June 2018 |access-date=24 June 2018 |archive-date=23 May 2021 |archive-url=https://web.archive.org/web/20210523150103/https://www.bbc.com/news/business-44559669 |url-status=live}}</ref>

==== Thermal decomposition of limestone ====
It is produced by thermal decomposition of limestone, {{chem2|CaCO3}} by heating ([[calcining]]) at about {{convert|850|C}}, in the manufacture of [[Calcium oxide|quicklime]] ([[calcium oxide]], CaO), a compound that has many industrial uses:
:{{chem2|CaCO3 → CaO + CO2}}

Acids liberate {{CO2}} from most metal carbonates. Consequently, it may be obtained directly from natural carbon dioxide [[spring (hydrosphere)|springs]], where it is produced by the action of acidified water on [[limestone]] or [[Dolomite (mineral)|dolomite]]. The reaction between [[hydrochloric acid]] and calcium carbonate (limestone or chalk) is shown below:
:{{chem2|CaCO3 + 2 HCl → CaCl2 + H2CO3}}

The [[carbonic acid]] ({{chem2|H2CO3}}) then decomposes to water and {{CO2}}:
:{{chem2|H2CO3 → CO2 + H2O}}

Such reactions are accompanied by foaming or bubbling, or both, as the gas is released. They have widespread uses in industry because they can be used to neutralize waste acid streams.

== Commercial uses ==
Carbon dioxide is used by the food industry, the oil industry, and the chemical industry.<ref name="kirk" />
The compound has varied commercial uses but one of its greatest uses as a chemical is in the production of carbonated beverages; it provides the sparkle in carbonated beverages such as soda water, beer and sparkling wine.

=== Precursor to chemicals ===
{{expand section|date=July 2014}}
{{See also|Sabatier reaction}}
In the chemical industry, carbon dioxide is mainly consumed as an ingredient in the production of [[urea]], with a smaller fraction being used to produce [[methanol]] and a range of other products.<ref>{{cite web|url=https://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter7.pdf|title=IPCC Special Report on Carbon dioxide Capture and Storage|publisher=The Intergovernmental Panel on Climate Change|access-date=4 September 2015|archive-url=https://web.archive.org/web/20150924115331/http://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter7.pdf|archive-date=24 September 2015|url-status=dead}}</ref> Some carboxylic acid derivatives such as [[sodium salicylate]] are prepared using {{CO2}} by the [[Kolbe–Schmitt reaction]].<ref>{{cite book | vauthors = Morrison RT, Boyd RN |title= Organic Chemistry |edition=4th |publisher=Allyn and Bacon |year=1983 |isbn=978-0-205-05838-9 |pages=[https://archive.org/details/organicchemistry04morr/page/976 976–977] |url=https://archive.org/details/organicchemistry04morr/page/976}}</ref>

In addition to conventional processes using {{CO2}} for chemical production, electrochemical methods are also being explored at a research level. In particular, the use of renewable energy for production of fuels from {{CO2}} (such as methanol) is attractive as this could result in fuels that could be easily transported and used within conventional combustion technologies but have no net {{CO2}} emissions.<ref>{{cite journal | vauthors = Badwal SP, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF | title = Emerging electrochemical energy conversion and storage technologies | journal = Frontiers in Chemistry | volume = 2 | pages = 79 | date = 24 September 2014 | pmid = 25309898 | pmc = 4174133 | doi = 10.3389/fchem.2014.00079 | bibcode = 2014FrCh....2...79B | doi-access = free}}</ref>

=== Agriculture ===
Plants require carbon dioxide to conduct photosynthesis. The atmospheres of greenhouses may (if of large size, must) be enriched with additional {{CO2}} to sustain and increase the rate of plant growth.<ref>{{cite web |url=http://www.ext.colostate.edu/mg/gardennotes/141.html |title=Plant Growth Factors: Photosynthesis, Respiration, and Transpiration |website=CMG GardenNotes | vauthors = Whiting D, Roll M, Vickerman L |publisher=Colorado Master Gardener Program |date=August 2010 |access-date=10 October 2011 |archive-url=https://web.archive.org/web/20140902192633/http://www.ext.colostate.edu/mg/gardennotes/141.html |archive-date=2 September 2014}}</ref><ref>{{cite book |chapter-url=http://www-formal.stanford.edu/jmc/nature/node21.html |chapter=Carbon dioxide |url=http://www-formal.stanford.edu/jmc/nature/nature.html |title=How Much Land Can Ten Billion People Spare for Nature? | vauthors = Waggoner PE |date=February 1994 |access-date=10 October 2011 |archive-date=12 October 2011 |archive-url=https://web.archive.org/web/20111012165809/http://www-formal.stanford.edu/jmc/nature/nature.html |url-status=live}}</ref> At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000&nbsp;ppm (1%) or higher for several hours will eliminate pests such as [[whiteflies]] and [[spider mite]]s in a greenhouse.<ref>{{cite journal | vauthors = Stafford N | title = Future crops: the other greenhouse effect | journal = Nature | volume = 448 | issue = 7153 | pages = 526–528 | date = August 2007 | pmid = 17671477 | doi = 10.1038/448526a | bibcode = 2007Natur.448..526S | s2cid = 9845813 | doi-access = free}}</ref> Some plants respond more favorably to rising carbon dioxide concentrations than others, which can lead to vegetation regime shifts like [[woody plant encroachment]].<ref>{{Citation |last1=Archer |first1=Steven R. |title=Woody Plant Encroachment: Causes and Consequences |date=2017 |work=Rangeland Systems |pages=25–84 |editor-last=Briske |editor-first=David D. |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-46709-2_2 |isbn=978-3-319-46707-8 |last2=Andersen |first2=Erik M. |last3=Predick |first3=Katharine I. |last4=Schwinning |first4=Susanne |last5=Steidl |first5=Robert J. |last6=Woods |first6=Steven R.|doi-access=free }}</ref>

=== Foods ===
[[File:Soda bubbles macro.jpg|thumb|Carbon dioxide bubbles in a soft drink]]

Carbon dioxide is a [[food additive]] used as a propellant and acidity regulator in the food industry. It is approved for usage in the EU<ref>UK Food Standards Agency: {{cite web |url=http://www.food.gov.uk/safereating/chemsafe/additivesbranch/enumberlist |title=Current EU approved additives and their E Numbers |access-date=27 October 2011 |archive-date=7 October 2010 |archive-url=https://web.archive.org/web/20101007124435/http://www.food.gov.uk/safereating/chemsafe/additivesbranch/enumberlist |url-status=live}}</ref> (listed as [[E number]] E290), US,<ref>US Food and Drug Administration: {{cite web |url=https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm |title=Food Additive Status List |website=[[Food and Drug Administration]] |access-date=13 June 2015 |archive-date=4 November 2017 |archive-url=https://web.archive.org/web/20171104061606/https://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm091048.htm |url-status=live}}</ref> Australia and New Zealand<ref>Australia New Zealand Food Standards Code{{cite web |url=http://www.comlaw.gov.au/Details/F2011C00827 |title=Standard 1.2.4 – Labelling of ingredients |date=8 September 2011 |access-date=27 October 2011 |archive-date=19 January 2012 |archive-url=https://web.archive.org/web/20120119082034/http://www.comlaw.gov.au/Details/F2011C00827 |url-status=live}}</ref> (listed by its [[INS number]] 290).

A candy called [[Pop Rocks]] is pressurized with carbon dioxide gas<ref>{{Cite book |url=https://books.google.com/books?id=0XeSJLflq90C&q=Pop+Rocks+is+pressurized+with+carbon+dioxide+gas&pg=PA7-IA3 |title=Futurific Leading Indicators Magazine |volume=1 |publisher=CRAES LLC |isbn=978-0-9847670-1-4 |access-date=9 November 2020 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815224429/https://books.google.com/books?id=0XeSJLflq90C&q=Pop+Rocks+is+pressurized+with+carbon+dioxide+gas&pg=PA7-IA3 |url-status=live}}</ref> at about {{convert|4000|kPa|bar psi|abbr=on|lk=on}}. When placed in the mouth, it dissolves (just like other hard candy) and releases the gas bubbles with an audible pop.

[[Leavening agent]]s cause dough to rise by producing carbon dioxide.<ref>{{Cite book |url=https://books.google.com/books?id=2bmaCgAAQBAJ&q=Leavening+agents+cause+dough+to+rise+by+producing+carbon+dioxide&pg=PT29 |title=Indian Breads: A Comprehensive Guide to Traditional and Innovative Indian Breads |vauthors=Vijay GP |date=25 September 2015 |publisher=Westland |isbn=978-93-85724-46-6}}{{Dead link|date=August 2023 |bot=InternetArchiveBot |fix-attempted=yes}}</ref> [[Baker's yeast]] produces carbon dioxide by fermentation of sugars within the dough, while chemical leaveners such as [[baking powder]] and [[baking soda]] release carbon dioxide when heated or if exposed to [[acid]]s.

==== Beverages ====
Carbon dioxide is used to produce [[carbonation|carbonated]] [[soft drink]]s and [[soda water]]. Traditionally, the carbonation of beer and sparkling wine came about through natural fermentation, but many manufacturers carbonate these drinks with carbon dioxide recovered from the fermentation process. In the case of bottled and kegged beer, the most common method used is carbonation with recycled carbon dioxide. With the exception of British [[cask ale#Real ale|real ale]], draught beer is usually transferred from kegs in a cold room or cellar to dispensing taps on the bar using pressurized carbon dioxide, sometimes mixed with nitrogen.

The taste of soda water (and related taste sensations in other carbonated beverages) is an effect of the dissolved carbon dioxide rather than the bursting bubbles of the gas. [[Carbonic anhydrase&nbsp;4]] converts carbon dioxide to [[carbonic acid]] leading to a [[sour]] taste, and also the dissolved carbon dioxide induces a [[somatosensory]] response.<ref>{{cite web |url= https://www.sciencedaily.com/releases/2009/10/091015141510.htm |title= Scientists Discover Protein Receptor For Carbonation Taste |website= [[ScienceDaily]] |date= 16 October 2009 |access-date= 29 March 2020 |archive-date= 29 March 2020 |archive-url= https://web.archive.org/web/20200329042900/https://www.sciencedaily.com/releases/2009/10/091015141510.htm |url-status= live}}</ref>

==== Winemaking ====
[[File:Dry ice used to preserve grapes after harvest.jpg|thumb|Dry ice used to preserve grapes after harvest]]
Carbon dioxide in the form of [[dry ice]] is often used during the [[cold soak]] phase in [[winemaking]] to cool clusters of [[grape]]s quickly after picking to help prevent spontaneous [[Fermentation (wine)|fermentation]] by wild [[yeast (wine)|yeast]]. The main advantage of using dry ice over water ice is that it cools the grapes without adding any additional water that might decrease the sugar concentration in the [[grape must]], and thus the [[ethanol|alcohol]] concentration in the finished wine. Carbon dioxide is also used to create a hypoxic environment for [[carbonic maceration]], the process used to produce [[Beaujolais]] wine.

Carbon dioxide is sometimes used to top up wine bottles or other [[storage (wine)|storage]] vessels such as barrels to prevent oxidation, though it has the problem that it can dissolve into the wine, making a previously still wine slightly fizzy. For this reason, other gases such as [[nitrogen]] or [[argon]] are preferred for this process by professional wine makers.

====Stunning animals====
Carbon dioxide is often used to "stun" animals before slaughter.<ref>{{cite journal | vauthors = Coghlan A |title=A more humane way of slaughtering chickens might get EU approval |journal=New Scientist |date=3 February 2018 |url=https://www.newscientist.com/article/2159895-a-more-humane-way-of-slaughtering-chickens-might-get-eu-approval |access-date=24 June 2018 |archive-date=24 June 2018 |archive-url=https://web.archive.org/web/20180624204842/https://www.newscientist.com/article/2159895-a-more-humane-way-of-slaughtering-chickens-might-get-eu-approval/ |url-status=live}}</ref> "Stunning" may be a misnomer, as the animals are not knocked out immediately and may suffer distress.<ref>{{cite web |url=http://kb.rspca.org.au/What-is-CO2-stunning_118.html |archive-url=https://web.archive.org/web/20140409003755/http://kb.rspca.org.au/What-is-CO2-stunning_118.html |url-status=dead |archive-date=9 April 2014 |title=What is {{CO2}} stunning? |publisher=RSPCA}}</ref><ref name=Campbell>{{cite journal | vauthors = Campbell A |title=Humane execution and the fear of the tumbril |journal=New Scientist |date=10 March 2018 |url=https://www.newscientist.com/letter/mg23731680-900-humane-execution-and-the-fear-of-the-tumbril-3 |access-date=24 June 2018 |archive-date=24 June 2018 |archive-url=https://web.archive.org/web/20180624204708/https://www.newscientist.com/letter/mg23731680-900-humane-execution-and-the-fear-of-the-tumbril-3/ |url-status=live}}</ref>

=== Inert gas ===
Carbon dioxide is one of the most commonly used compressed gases for pneumatic (pressurized gas) systems in portable pressure tools. Carbon dioxide is also used as an atmosphere for [[welding]], although in the welding arc, it reacts to [[oxidation|oxidize]] most metals. Use in the automotive industry is common despite significant evidence that welds made in carbon dioxide are more [[brittle]] than those made in more inert atmospheres.<ref>{{Cite book |last=International |first=Petrogav |url=https://books.google.com/books?id=ZS7JDwAAQBAJ |title=Production Course for Hiring on Offshore Oil and Gas Rigs |publisher=Petrogav International |pages=214 |language=en}}</ref> When used for [[MIG welding]], {{CO2}} use is sometimes referred to as MAG welding, for Metal Active Gas, as {{CO2}} can react at these high temperatures. It tends to produce a hotter puddle than truly inert atmospheres, improving the flow characteristics. Although, this may be due to atmospheric reactions occurring at the puddle site. This is usually the opposite of the desired effect when welding, as it tends to embrittle the site, but may not be a problem for general mild steel welding, where ultimate ductility is not a major concern.

Carbon dioxide is used in many consumer products that require pressurized gas because it is inexpensive and nonflammable, and because it undergoes a phase transition from gas to liquid at room temperature at an attainable pressure of approximately {{convert|60|bar|psi atm|abbr=on|lk=on}}, allowing far more carbon dioxide to fit in a given container than otherwise would. Life jackets often contain canisters of pressured carbon dioxide for quick inflation. [[Aluminium]] capsules of {{CO2}} are also sold as supplies of compressed gas for [[air gun]]s, [[paintball]] markers/guns, inflating bicycle tires, and for making [[carbonated water]]. High concentrations of carbon dioxide can also be used to kill pests. Liquid carbon dioxide is used in [[supercritical drying]] of some food products and technological materials, in the preparation of specimens for [[scanning electron microscopy]]<ref name=Nordestgaard>{{cite journal | vauthors = Nordestgaard BG, Rostgaard J | title = Critical-point drying versus freeze drying for scanning electron microscopy: a quantitative and qualitative study on isolated hepatocytes | journal = Journal of Microscopy | volume = 137 | issue = Pt 2 | pages = 189–207 | date = February 1985 | pmid = 3989858 | doi = 10.1111/j.1365-2818.1985.tb02577.x | s2cid = 32065173}}</ref> and in the [[decaffeination]] of [[coffee bean]]s.

=== Fire extinguisher ===
[[File:US Army 53023 Fire Prevention Week.jpg|thumb|Use of a {{CO2}} fire extinguisher]]
Carbon dioxide can be used to extinguish flames by flooding the environment around the flame with the gas. It does not itself react to extinguish the flame, but starves the flame of oxygen by displacing it. Some [[Fire extinguisher#Halons, Halon-replacement clean agents and carbon dioxide|fire extinguishers]], especially those designed for [[electrical fire]]s, contain liquid carbon dioxide under pressure. Carbon dioxide extinguishers work well on small flammable liquid and electrical fires, but not on ordinary combustible fires, because they do not cool the burning substances significantly, and when the carbon dioxide disperses, they can catch fire upon exposure to [[atmospheric oxygen]]. They are mainly used in server rooms.<ref>{{Cite web |title=Types of Fire Extinguishers |url=https://www.firesafe.org.uk/types-use-and-colours-of-portable-fire-extinguishers/ |url-status=live |access-date=2021-06-28 |website=The Fire Safety Advice Centre |archive-date=28 June 2021 |archive-url=https://web.archive.org/web/20210628185630/https://www.firesafe.org.uk/types-use-and-colours-of-portable-fire-extinguishers/}}</ref>

Carbon dioxide has also been widely used as an extinguishing agent in fixed fire-protection systems for local application of specific hazards and total flooding of a protected space.<ref>National Fire Protection Association Code 12.</ref> [[International Maritime Organization]] standards recognize carbon dioxide systems for fire protection of ship holds and engine rooms. Carbon dioxide-based fire-protection systems have been linked to several deaths, because it can cause suffocation in sufficiently high concentrations. A review of {{CO2}} systems identified 51 incidents between 1975 and the date of the report (2000), causing 72 deaths and 145 injuries.<ref>Carbon Dioxide as a Fire Suppressant: Examining the Risks, US EPA. 2000.</ref>

=== Supercritical {{CO2}} as solvent ===
{{See also|Supercritical carbon dioxide|Green chemistry}}

Liquid carbon dioxide is a good [[solvent]] for many [[lipophilic]] [[organic compound]]s and is used to [[decaffeinate]] [[coffee]].<ref name="Tsotsas" /> Carbon dioxide has attracted attention in the [[pharmaceutical]] and other chemical processing industries as a less toxic alternative to more traditional solvents such as [[organochloride]]s. It is also used by some [[dry cleaners]] for this reason. It is used in the preparation of some [[Aerogel#Production|aerogels]] because of the properties of supercritical carbon dioxide.

=== Medical and pharmacological uses ===
In medicine, up to 5% carbon dioxide (130 times atmospheric concentration) is added to oxygen for stimulation of breathing after [[apnea]] and to stabilize the {{chem2|O2}}/{{CO2}} balance in blood.

Carbon dioxide can be mixed with up to 50% oxygen, forming an inhalable gas; this is known as [[Carbogen]] and has a variety of medical and research uses.

Another medical use are the [[Mofetta|mofette]], dry spas that use carbon dioxide from post-volcanic discharge for therapeutic purposes.

=== Energy ===

Supercritical {{CO2}} is used as the working fluid in the [[Allam power cycle]] engine.

==== Fossil fuel recovery ====
Carbon dioxide is used in [[enhanced oil recovery]] where it is injected into or adjacent to producing oil wells, usually under [[Supercritical fluid|supercritical]] conditions, when it becomes [[miscibility|miscible]] with the oil. This approach can increase original oil recovery by reducing residual oil saturation by 7–23% additional to [[Extraction of petroleum#Primary recovery|primary extraction]].<ref>{{cite book |date=20 December 2011 |url=http://www.globalccsinstitute.com/publications/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide |chapter-url=http://hub.globalccsinstitute.com/publications/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide/appendix-co2-use |title=Accelerating the uptake of CCS: industrial use of captured carbon dioxide |chapter=Appendix A: {{CO2}} for use in enhanced oil recovery (EOR) |website=Global CCS Institute |access-date=2 January 2017 |archive-date=28 April 2017 |archive-url=https://web.archive.org/web/20170428013833/http://www.globalccsinstitute.com/publications/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide |url-status=live}}</ref> It acts as both a pressurizing agent and, when dissolved into the underground [[crude oil]], significantly reduces its viscosity, and changing surface chemistry enabling the oil to flow more rapidly through the reservoir to the removal well.<ref>{{cite journal | vauthors = Austell JM |year=2005 |title={{CO2}} for Enhanced Oil Recovery Needs – Enhanced Fiscal Incentives |journal=Exploration & Production: The Oil & Gas Review |url=http://www.touchoilandgas.com/enhanced-recovery-needs-enhanced-a423-1.html |archive-url=https://web.archive.org/web/20120207071349/http://www.touchoilandgas.com/enhanced-recovery-needs-enhanced-a423-1.html |archive-date=7 February 2012 |access-date= 28 September 2007}}</ref> In mature oil fields, extensive pipe networks are used to carry the carbon dioxide to the injection points.

In [[enhanced coal bed methane recovery]], carbon dioxide would be pumped into the coal seam to displace methane, as opposed to current methods which primarily rely on the removal of water (to reduce pressure) to make the coal seam release its trapped methane.<ref>{{cite web|url=http://www.ipe.ethz.ch/laboratories/spl/research/adsorption/project03|title=Enhanced coal bed methane recovery|date=31 August 2006|publisher=ETH Zurich|url-status=dead|archive-url=https://web.archive.org/web/20110706232006/http://www.ipe.ethz.ch/laboratories/spl/research/adsorption/project03|archive-date=6 July 2011}}</ref>

==== Bio transformation into fuel ====
{{main|Carbon capture and utilization}}

It has been proposed that {{CO2}} from power generation be bubbled into ponds to stimulate growth of [[algae]] that could then be converted into [[biodiesel]] fuel.<ref name="csmon">{{cite news| vauthors = Clayton M |url=http://www.csmonitor.com/2006/0111/p01s03-sten.html|title=Algae – like a breath mint for smokestacks|date=11 January 2006|work=[[The Christian Science Monitor]]|access-date=11 October 2007|archive-date=14 September 2008|archive-url=https://web.archive.org/web/20080914134926/http://www.csmonitor.com/2006/0111/p01s03-sten.html|url-status=live}}</ref> A strain of the [[cyanobacterium]] ''[[Synechococcus elongatus]]'' has been genetically engineered to produce the fuels [[isobutyraldehyde]] and [[isobutanol]] from {{CO2}} using photosynthesis.<ref>{{cite journal | vauthors = Atsumi S, Higashide W, Liao JC | title = Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde | journal = Nature Biotechnology | volume = 27 | issue = 12 | pages = 1177–1180 | date = December 2009 | pmid = 19915552 | doi = 10.1038/nbt.1586 | s2cid = 1492698}}</ref>

Researchers have developed an [[electrocatalytic]] technique using enzymes isolated from bacteria to power the chemical reactions which convert {{CO2}} into fuels.<ref>{{Cite journal | vauthors = Cobb S, Badiani V, Dharani A, Wagner A, Zacarias S, Oliveira AR, Pereira I, Reisner E | display-authors = 6 |date=2022-02-28 |title=Fast {{CO2}} hydration kinetics impair heterogeneous but improve enzymatic {{CO2}} reduction catalysis |journal=Nature Chemistry | volume = 14 | issue = 4 |language=en |pages=417–424 |doi=10.1038/s41557-021-00880-2 | pmid = 35228690 | pmc = 7612589 | bibcode = 2022NatCh..14..417C | s2cid = 247160910 |issn=1755-4349}}</ref><ref>{{cite journal | vauthors = Edwardes Moore E, Cobb SJ, Coito AM, Oliveira AR, Pereira IA, Reisner E | title = Understanding the local chemical environment of bioelectrocatalysis | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 119 | issue = 4 | pages = e2114097119 | date = January 2022 | pmid = 35058361 | pmc = 8795565 | doi = 10.1073/pnas.2114097119 | doi-access = free | bibcode = 2022PNAS..11914097E}}</ref><ref>{{Cite web |date=2022-03-01 |title=Clean Way To Turn {{CO2}} Into Fuel Inspired by Nature |url=http://www.technologynetworks.com/applied-sciences/news/clean-way-to-turn-co2-into-fuel-inspired-by-nature-359088 |access-date=2022-03-02 |website=Applied Sciences from Technology Networks |language=en}}</ref>

===== Refrigerant =====
{{see also|Refrigerant|Sustainable automotive air conditioning}}
[[File:Comparison carbon dioxide water phase diagrams.svg|thumb|upright=2|Comparison of the pressure–temperature phase diagrams of carbon dioxide (red) and water (blue) as a log-lin chart with phase transitions points at 1 atmosphere]]

Liquid and solid carbon dioxide are important [[refrigerant]]s, especially in the food industry, where they are employed during the transportation and storage of ice cream and other frozen foods. Solid carbon dioxide is called "dry ice" and is used for small shipments where refrigeration equipment is not practical. Solid carbon dioxide is always below {{convert|-78.5|C|F}} at regular atmospheric pressure, regardless of the air temperature.

{{anchor|R744}} Liquid carbon dioxide (industry nomenclature R744 or R-744) was used as a refrigerant prior to the use of [[dichlorodifluoromethane]] (R12, a [[chlorofluorocarbon]] (CFC) compound).<ref>{{Cite web |last=Pearson |first=S. Forbes |title=Refrigerants Past, Present and Future |url=http://www.r744.com/files/pdf_597.pdf |url-status=dead |archive-url=https://web.archive.org/web/20180713171048/http://www.r744.com/files/pdf_597.pdf |archive-date=2018-07-13 |access-date=2021-03-30 |website=R744}}</ref> {{CO2}} might enjoy a renaissance because one of the main substitutes to CFCs, [[1,1,1,2-tetrafluoroethane]] ([[R134a]], a [[hydrofluorocarbon]] (HFC) compound) contributes to [[climate change]] more than {{CO2}} does. {{CO2}} physical properties are highly favorable for cooling, refrigeration, and heating purposes, having a high volumetric cooling capacity. Due to the need to operate at pressures of up to {{convert|130|bar|psi kPa}}, {{CO2}} systems require highly mechanically resistant reservoirs and components that have already been developed for mass production in many sectors. In automobile air conditioning, in more than 90% of all driving conditions for latitudes higher than 50°, {{CO2}} (R744) operates more efficiently than systems using HFCs (e.g., R134a). Its environmental advantages ([[Global warming potential|GWP]] of 1, non-ozone depleting, non-toxic, non-flammable) could make it the future working fluid to replace current HFCs in cars, supermarkets, and heat pump water heaters, among others. [[Coca-Cola]] has fielded {{CO2}}-based beverage coolers and the [[United States Army|U.S. Army]] is interested in {{CO2}} refrigeration and heating technology.<ref name="ccref1">{{cite web |url=http://www.coca-colacompany.com/cooling-equipment-pushing-forward-with-hfc-free |title=The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming |access-date=11 October 2007 |date=5 June 2006 |publisher=The Coca-Cola Company |archive-date=1 November 2013 |archive-url=https://web.archive.org/web/20131101195654/http://www.coca-colacompany.com/cooling-equipment-pushing-forward-with-hfc-free |url-status=live}}</ref><ref name="usforces">{{cite news|title = Modine reinforces its {{CO2}} research efforts|url = http://www.r744.com/news/news_ida145.php|archive-url = https://web.archive.org/web/20080210194203/http://www.r744.com/news/news_ida145.php|url-status = dead|archive-date = 10 February 2008|date = 28 June 2007|publisher = R744.com}}</ref>

=== Minor uses ===
[[File:Carbon Dioxide Laser At The Laser Effects Test Facility.jpg|thumb|right|upright=1.35|A [[carbon-dioxide laser]]]]
Carbon dioxide is the [[active laser medium|lasing medium]] in a [[carbon-dioxide laser]], which is one of the earliest type of lasers.

Carbon dioxide can be used as a means of controlling the [[pH]] of swimming pools,<ref>{{Cite book |url=https://books.google.com/books?id=IWpWAAAAMAAJ&q=%C2%A0%C2%A0Carbon+dioxide+can+be+used+as+a+means+of+controlling+the+pH+of+swimming+pool |title=TCE, the Chemical Engineer |date=1990 |publisher=Institution of Chemical Engineers |access-date=2 June 2020 |archive-date=17 August 2021 |archive-url=https://web.archive.org/web/20210817030754/https://books.google.com/books?id=IWpWAAAAMAAJ&q=%C2%A0%C2%A0Carbon+dioxide+can+be+used+as+a+means+of+controlling+the+pH+of+swimming+pool |url-status=live}}</ref> by continuously adding gas to the water, thus keeping the pH from rising. Among the advantages of this is the avoidance of handling (more hazardous) acids. Similarly, it is also used in the maintaining [[Reef aquarium|reef aquaria]], where it is commonly used in [[calcium reactor]]s to temporarily lower the pH of water being passed over [[calcium carbonate]] in order to allow the calcium carbonate to dissolve into the water more freely, where it is used by some [[coral]]s to build their skeleton.

Used as the primary coolant in the British [[advanced gas-cooled reactor]] for nuclear power generation.

Carbon dioxide induction is commonly used for the euthanasia of laboratory research animals. Methods to administer {{CO2}} include placing animals directly into a closed, prefilled chamber containing {{CO2}}, or exposure to a gradually increasing concentration of {{CO2}}. The [[American Veterinary Medical Association]]'s 2020 guidelines for carbon dioxide induction state that a displacement rate of 30–70% of the chamber or cage volume per minute is optimal for the humane euthanasia of small rodents.<ref name=avma>{{cite web |url=https://www.avma.org/kb/policies/documents/euthanasia.pdf |title=AVMA guidelines for the euthanasia of animals: 2020 Edition |date=2020 |publisher=[[American Veterinary Medical Association]] |access-date=August 13, 2021 |archive-date=1 February 2014 |archive-url=https://web.archive.org/web/20140201174132/https://www.avma.org/KB/Policies/Documents/euthanasia.pdf |url-status=live}}</ref>{{Rp|5, 31}} Percentages of {{CO2}} vary for different species, based on identified optimal percentages to minimize distress.<ref name=avma />{{Rp|22}}

Carbon dioxide is also used in several related [[carbon dioxide cleaning|cleaning and surface-preparation]] techniques.

== History of discovery ==
[[File:Carbon-dioxide-crystal-3D-vdW.png|thumb|left|upright|Crystal structure of [[dry ice]]]]
Carbon dioxide was the first gas to be described as a discrete substance. In about 1640,<ref>{{cite journal |vauthors=Harris D |date=September 1910 |title=The Pioneer in the Hygiene of Ventilation |url=https://zenodo.org/record/2088803 |url-status=live |journal=The Lancet |volume=176 |issue=4542 |pages=906–908 |doi=10.1016/S0140-6736(00)52420-9 |archive-url=https://web.archive.org/web/20200317181844/https://zenodo.org/record/2088803 |archive-date=17 March 2020 |access-date=6 December 2019}}</ref> the [[Flemish people|Flemish]] chemist [[Jan Baptist van Helmont]] observed that when he burned [[charcoal]] in a closed vessel, the mass of the resulting [[ash (analytical chemistry)|ash]] was much less than that of the original charcoal. His interpretation was that the rest of the charcoal had been transmuted into an invisible substance he termed a "gas" (from Greek "chaos") or "wild spirit" (''spiritus sylvestris'').<ref>{{cite book |title=History of [[industrial gas]]es |vauthors=Almqvist E |date=2003 |publisher=Springer |isbn=978-0-306-47277-0 |page=93}}</ref>

The properties of carbon dioxide were further studied in the 1750s by the [[Scotland|Scottish]] physician [[Joseph Black]]. He found that [[limestone]] ([[calcium carbonate]]) could be heated or treated with [[acid]]s to yield a gas he called "fixed air". He observed that the fixed air was denser than air and supported neither flame nor animal life. Black also found that when bubbled through [[limewater]] (a saturated aqueous solution of [[calcium hydroxide]]), it would [[Precipitation (chemistry)|precipitate]] calcium carbonate. He used this phenomenon to illustrate that carbon dioxide is produced by animal respiration and microbial fermentation. In 1772, English chemist [[Joseph Priestley]] published a paper entitled ''Impregnating Water with Fixed Air'' in which he described a process of dripping [[sulfuric acid]] (or ''oil of vitriol'' as Priestley knew it) on chalk in order to produce carbon dioxide, and forcing the gas to dissolve by agitating a bowl of water in contact with the gas.<ref name="Priestley">{{cite journal |author-link1=Joseph Priestley |vauthors=Priestley J, Hey W |year=1772 |title=Observations on Different Kinds of Air |url=http://web.lemoyne.edu/~GIUNTA/priestley.html |url-status=live |journal=Philosophical Transactions |volume=62 |pages=147–264 |doi=10.1098/rstl.1772.0021 |archive-url=https://web.archive.org/web/20100607170541/http://web.lemoyne.edu/%7Egiunta/priestley.html |archive-date=7 June 2010 |access-date=11 October 2007 |s2cid=186210131}}</ref>

Carbon dioxide was first liquefied (at elevated pressures) in 1823 by [[Humphry Davy]] and [[Michael Faraday]].<ref name="Davy">{{cite journal |author-link=Humphry Davy |vauthors=Davy H |year=1823 |title=On the Application of Liquids Formed by the Condensation of Gases as Mechanical Agents |url=https://archive.org/details/jstor-107649 |journal=Philosophical Transactions |volume=113 |pages=199–205 |doi=10.1098/rstl.1823.0020 |jstor=107649 |doi-access=free}}</ref> The earliest description of solid carbon dioxide ([[dry ice]]) was given by the French inventor [[Adrien-Jean-Pierre Thilorier]], who in 1835 opened a pressurized container of liquid carbon dioxide, only to find that the cooling produced by the rapid evaporation of the liquid yielded a "snow" of solid {{CO2}}.<ref>{{cite journal |vauthors=Thilorier AJ |year=1835 |title=Solidification de l'Acide carbonique |url=http://gallica.bnf.fr/ark:/12148/bpt6k29606/f194.item |url-status=live |journal=Comptes Rendus |volume=1 |pages=194–196 |archive-url=https://web.archive.org/web/20170902172202/http://gallica.bnf.fr/ark:/12148/bpt6k29606/f194.item |archive-date=2 September 2017 |access-date=1 September 2017}}</ref><ref>{{cite journal |vauthors=Thilorier AJ |year=1836 |title=Solidification of carbonic acid |url=https://books.google.com/books?id=4GwqAAAAYAAJ&pg=PA446 |url-status=live |journal=The London and Edinburgh Philosophical Magazine |volume=8 |issue=48 |pages=446–447 |doi=10.1080/14786443608648911 |archive-url=https://web.archive.org/web/20160502065711/https://books.google.com/books?id=4GwqAAAAYAAJ&pg=PA446 |archive-date=2 May 2016 |access-date=15 November 2015}}</ref>

Carbon dioxide in combination with nitrogen was known from earlier times as [[Blackdamp]], stythe or choke damp.{{efn|Sometimes spelt "choak-damp" in 19th Century texts.}} Along with the other types of [[damp (mining)|damp]] it was encountered in mining operations and well sinking. Slow oxidation of coal and biological processes replaced the oxygen to create a [[Suffocation|suffocating]] mixture of nitrogen and carbon dioxide.<ref>{{cite journal | url=https://www.jstor.org/stable/115391 | jstor=115391 | title=Notes of an Enquiry into the Nature and Physiological Action<!--bad matadata--> of Black-Damp, as Met with in Podmore Colliery, Staffordshire, and Lilleshall Colliery, Shropshire | last1=Haldane | first1=John | journal=Proceedings of the Royal Society of London | date=1894 | volume=57 | pages=249–257 | bibcode=1894RSPS...57..249H}}</ref>

== See also ==
{{Portal|Chemistry}}
{{div col}}
* {{annotated link|Arterial blood gas test}}
* {{annotated link|Bosch reaction}}
* {{annotated link|Carbon dioxide removal}} (from the atmosphere)
* {{annotated link|Gilbert Plass}} (early work on {{CO2}} and climate change)
* {{annotated link|Greenhouse Gases Observing Satellite}}
* [[List of countries by carbon dioxide emissions]]
* [[List of least carbon efficient power stations]]
* {{annotated link|Meromictic lake}}
* [[NASA]]'s {{annotated link|Orbiting Carbon Observatory 2}}
* {{annotated link|Soil gas}}
{{div col end}}

== Notes ==
{{reflist|group=note}}
{{notelist}}

== References ==
{{reflist}}

== External links ==
{{Commons category}}
{{Library resources box |lcheading=Carbon dioxide}}
* [https://earth.nullschool.net/#current/chem/surface/level/overlay=co2sc/winkel3 Current global map of carbon dioxide concentration]
* [https://www.cdc.gov/niosh/npg/npgd0103.html CDC – NIOSH Pocket Guide to Chemical Hazards – Carbon Dioxide]
* [https://gml.noaa.gov/ccgg/trends/ Trends in Atmospheric Carbon Dioxide] (NOAA)
* [https://web.archive.org/web/20071007040239/http://www.shecco.com/about/history.php The rediscovery of CO<sub>2</sub>: History, What is Shecco?] - as [[refrigerant]]

{{Oxides}}
{{Oxides of carbon}}
{{Inorganic compounds of carbon}}
{{Global Warming|state=collapsed}}
{{Molecules detected in outer space}}
{{Authority control}}
{{oxygen compounds}}

{{DEFAULTSORT:Carbon Dioxide}}
[[Category:Carbon dioxide| ]]
[[Category:Acid anhydrides]]
[[Category:Acidic oxides]]
[[Category:Coolants]]
[[Category:Fire suppression agents]]
[[Category:Greenhouse gases]]
[[Category:Household chemicals]]
[[Category:Inorganic solvents]]
[[Category:Laser gain media]]
[[Category:Nuclear reactor coolants]]
[[Category:Oxocarbons]]
[[Category:Propellants]]
[[Category:Refrigerants]]
[[Category:Gaseous signaling molecules]]
[[Category:E-number additives]]
[[Category:Triatomic molecules]]