Thromboxane A2: Difference between revisions

Page 1
Page 2
Content deleted Content added
linked 'fibrinogen'
Added the cs1 style template to denote Vancouver ("vanc") citation style, because references contain "vauthors" attribute to specify the list of authors. Add: pmid, s2cid, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. | #UCB_Other
 
(54 intermediate revisions by 44 users not shown)
Line 1: Line 1:
{{cs1 config|name-list-style=vanc}}
{{chembox
{{chembox
| Verifiedfields = changed
| verifiedrevid = 411950909
| Watchedfields = changed
| verifiedrevid = 439079919
| ImageFile = Thromboxane A2 acsv.svg
| ImageFile = Thromboxane A2 acsv.svg
| ImageSize =
| ImageSize =
Line 7: Line 10:
| IUPACName =
| IUPACName =
| OtherNames =
| OtherNames =
| Section1 = {{Chembox Identifiers
|Section1={{Chembox Identifiers
| IUPHAR_ligand = 4482
| CASNo = 57576-52-0
| CASNo_Ref = {{cascite|correct|??}}
| PubChem = 5280497
| SMILES =
| CASNo = 57576-52-0
| UNII_Ref = {{fdacite|correct|FDA}}
| MeSHName = Thromboxane+A2
| UNII = 4C2A5G825S
| PubChem = 5280497
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| ChemSpiderID = 4444137
| ChEBI_Ref = {{ebicite|changed|EBI}}
| ChEBI = 15627
| KEGG_Ref = {{keggcite|changed|kegg}}
| KEGG = C02198
| MeSHName = Thromboxane+A2
| SMILES = CCCCC[C@@H](/C=C/[C@@H]1[C@H]([C@@H]2C[C@@H](O2)O1)C/C=C\CCCC(=O)O)O
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18-14-20(24-17)25-18)10-7-4-5-8-11-19(22)23/h4,7,12-13,15-18,20-21H,2-3,5-6,8-11,14H2,1H3,(H,22,23)/b7-4-,13-12+/t15-,16+,17+,18-,20+/m0/s1
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = DSNBHJFQCNUKMA-SCKDECHMSA-N
}}
}}
| Section2 = {{Chembox Properties
|Section2={{Chembox Properties
| C=20 | H=32 | O=5
| Formula = {{Carbon|20}}{{Hydrogen|32}}{{Oxygen|5}}
| Appearance =
| MolarMass = 352.465 g/mol
| Appearance =
| Density =
| Density =
| MeltingPt =
| MeltingPt =
| BoilingPt =
| BoilingPt =
| Solubility =
| Solubility =
}}
}}
| Section3 = {{Chembox Hazards
|Section3={{Chembox Hazards
| MainHazards =
| MainHazards =
| FlashPt =
| FlashPt =
| Autoignition =
| AutoignitionPt =
}}
}}
}}
}}


'''Thromboxane A2''' ('''TXA2''') is a type of [[thromboxane]] that is produced by activated [[platelets]] during [[hemostasis]] and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation. This is achieved by activating the [[thromboxane receptor]], which results in platelet-shape change, inside-out activation of [[integrin]]s, and [[degranulation]].<ref>{{Cite journal|last=Offermanns|first=Stefan|date=2006-12-08|title=Activation of Platelet Function Through G Protein–Coupled Receptors|journal=Circulation Research|language=EN|volume=99|issue=12|pages=1293–1304|doi=10.1161/01.res.0000251742.71301.16|pmid=17158345|issn=0009-7330|doi-access=free}}</ref> Circulating [[fibrinogen]] binds these receptors on adjacent platelets, further strengthening the [[clot]]. Thromboxane A2 is also a known [[vasoconstrictor]]<ref>{{Cite journal|last1=Ding|first1=Xueqin|last2=Murray|first2=Paul A.|date=November 2005|title=Cellular mechanisms of thromboxane A2-mediated contraction in pulmonary veins|journal=American Journal of Physiology. Lung Cellular and Molecular Physiology|volume=289|issue=5|pages=L825–833|doi=10.1152/ajplung.00177.2005|issn=1040-0605|pmid=15964897|s2cid=3171857 }}</ref><ref>{{Cite journal|last1=Yamamoto|first1=K.|last2=Ebina|first2=S.|last3=Nakanishi|first3=H.|last4=Nakahata|first4=N.|date=November 1995|title=Thromboxane A2 receptor-mediated signal transduction in rabbit aortic smooth muscle cells|journal=General Pharmacology|volume=26|issue=7|pages=1489–1498|issn=0306-3623|pmid=8690235|doi=10.1016/0306-3623(95)00025-9}}</ref><ref>{{Cite journal|last=Smyth|first=Emer M|date=2010-04-01|title=Thromboxane and the thromboxane receptor in cardiovascular disease|journal=Clinical Lipidology|volume=5|issue=2|pages=209–219|doi=10.2217/CLP.10.11|issn=1758-4299|pmc=2882156|pmid=20543887}}</ref><ref>{{Cite journal|last1=Winn|first1=R|last2=Harlan|first2=J|last3=Nadir|first3=B|last4=Harker|first4=L|last5=Hildebrandt|first5=J|date=September 1983|title=Thromboxane A2 mediates lung vasoconstriction but not permeability after endotoxin.|journal=Journal of Clinical Investigation|volume=72|issue=3|pages=911–918|issn=0021-9738|pmc=1129256|pmid=6886010|doi=10.1172/jci111062}}</ref> and is especially important during tissue injury and inflammation. It is also regarded as responsible for [[Prinzmetal's angina]].
'''Thromboxane A2''' (TXA2) is a [[thromboxane]]. It is produced by activated platelets and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation. This is achieved by mediating expression of the glycoprotein complex GP IIb/IIIa in the cell membrane of platelets. Circulating [[fibrinogen]] binds these receptors on adjacent platelets, further strengthening the clot.


Receptors that mediate TXA2 actions are [[thromboxane receptor|thromboxane A2 receptors]]. The human TXA2 receptor (TP) is a typical G protein-coupled receptor (GPCR) with seven transmembrane segments. In humans, two TP receptor splice variants - TPα and TPβ - have so far been cloned.
Receptors that mediate TXA2 actions are [[thromboxane receptor|thromboxane A2 receptors]]. The human TXA2 receptor (TP) is a typical G protein-coupled receptor (GPCR) with seven transmembrane segments. In humans, two TP receptor splice variants TPα and TPβ have so far been cloned.


==Synthesis and breakdown==
==Synthesis and breakdown==
TXA2 is generated from [[prostaglandin H2]] by [[thromboxane-A synthase]]. [[Aspirin]] irreversibly inhibits platelet [[cyclooxygenase 1]] preventing the formation of prostaglandin H2, and therefore thromboxane A2.
TXA2 is generated from [[prostaglandin H2]] by [[thromboxane-A synthase]] in a metabolic reaction which generates approximately equal amounts of '''[[12-Hydroxyheptadecatrienoic acid]]''' ('''12-HHT'''). [[Aspirin]] irreversibly inhibits platelet [[cyclooxygenase 1]] preventing the formation of prostaglandin H2, and therefore thromboxane A2. Contrastly, TxA2 vascular tissue synthesis is stimulated by angiotensin II which promotes cyclooxygenase I's metabolism of arachidonic acid. An angiotensin II dependent pathway also induces hypertension and interacts with TxA2 receptors.<ref>{{Cite journal |last1=Francois |first1=Helene |last2=Athirakul |first2=Krairerk |last3=Mao |first3=Lan |last4=Rockman |first4=Howard |last5=Coffman |first5=Thomas M. |date=February 2004 |title=Role for Thromboxane Receptors in Angiotensin-II–Induced Hypertension |journal=Hypertension |language=en |volume=43 |issue=2 |pages=364–369 |doi=10.1161/01.HYP.0000112225.27560.24 |issn=0194-911X|doi-access=free |pmid=14718360 }}</ref>


TXA2 is very unstable in aqueous solution, since it is hydrolyzed within about 30 seconds to the biologically inactive [[thromboxane B2]]. Due to its very short half life, TXA2 primarily functions as an autocrine or paracrine mediator in the nearby tissues surrounding its site of production. Most work in the field of TXA2 is done instead with synthetic analogs such as [[U46619]] and [[I-BOP]].<ref>{{cite article|title=Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855 but not Thr-697|author=Michael P. Walsh, et all|url=http://biosupport.licor.com/docs/2005/BJ20050237.pdf}} </ref> In human studies, [[11-dehydrothromboxane B2]] levels are used to indirectly measure TXA2 production.<ref>{{cite journal|title=11-Dehydrothromboxane B2: a quantitative index of thromboxane A2 formation in the human circulation|author=Catella F, Healy D, Lawson JA, FitzGerald GA|journal=PNAS|year=1986|volume=83|issue=16|pages=5861&ndash;5865|url=http://www.pnas.org/content/83/16/5861.abstract|pmid=3461463|doi=10.1073/pnas.83.16.5861|pmc=386396}}</ref><ref>{{cite journal|author=Lordkipanidzé M, Pharand C, Schampaert E, Turgeon J, Palisaitis DA, Diodati JG|title=A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease|journal=Eur Heart J|year=2007|volume=28|issue=14|pages=1702&ndash;1708|doi=10.1093/eurheartj/ehm226|pmid=17569678}}</ref>
TXA2 is very unstable in aqueous solution, since it is hydrated within about 30 seconds to the biologically inactive [[thromboxane B2]]. 12-HHT, while once thought to be an inactive byproduct of TXA2 synthesis, has recently been shown to have a range of potentially important actions, some of which relate to the actions of TXA2 (see [[12-Hydroxyheptadecatrienoic acid]]).<ref>{{cite journal | doi = 10.1093/jb/mvu078 | volume=157 | title=Two distinct leukotriene B4 receptors, BLT1 and BLT2 | year=2014 | journal=Journal of Biochemistry | pages=65–71 | last1 = Yokomizo | first1 = T. | issue=2 | pmid=25480980| doi-access= }}</ref> Due to its very short half life, TXA2 primarily functions as an autocrine or paracrine mediator in the nearby tissues surrounding its site of production. Most work in the field of TXA2 is done instead with synthetic analogs such as [[U46619]] and [[I-BOP]].<ref>{{cite news|title=Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855 but not Thr-697|author=Michael P. Walsh|display-authors=etal|url=http://biosupport.licor.com/docs/2005/BJ20050237.pdf|url-status=dead|archive-url=https://web.archive.org/web/20110713204304/http://biosupport.licor.com/docs/2005/BJ20050237.pdf|archive-date=2011-07-13}}</ref> In human studies, [[11-dehydrothromboxane B2]] levels are used to indirectly measure TXA2 production.<ref>{{cite journal|title=11-Dehydrothromboxane B2: a quantitative index of thromboxane A2 formation in the human circulation|vauthors=Catella F, Healy D, Lawson JA, FitzGerald GA|journal=PNAS|year=1986|volume=83|issue=16|pages=5861&ndash;5865|pmid=3461463|doi=10.1073/pnas.83.16.5861|pmc=386396|bibcode=1986PNAS...83.5861C|doi-access=free}}</ref><ref>{{cite journal|vauthors=Lordkipanidzé M, Pharand C, Schampaert E, Turgeon J, Palisaitis DA, Diodati JG|title=A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease|journal=Eur Heart J|year=2007|volume=28|issue=14|pages=1702&ndash;1708|doi=10.1093/eurheartj/ehm226|pmid=17569678|doi-access=free}}</ref>


[[Image:Eicosanoid synthesis.svg|thumb|center|320px|Eicosanoid synthesis.]]
[[Image:Eicosanoid synthesis.svg|thumb|center|320px|Eicosanoid synthesis.]]

==References==
{{Reflist|30em}}


{{Eicosanoids}}
{{Eicosanoids}}
{{Prostanoidergics}}
== References ==
{{reflist}}


[[Category:Eicosanoids]]
[[Category:Eicosanoids]]

{{biochem-stub}}

[[pl:Tromboksan A2]]