Jump to content

5-4-3 rule

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 96.51.205.25 (talk) at 05:17, 31 May 2013 (→‎Details: Repeater operation with respect to frame preamble.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The 5-4-3 rule also referred to as the IEEE way (contrary to the Ethernet way) is a design guideline for Ethernet computer networks covering the number of repeaters and segments on shared-access Ethernet backbones in a tree topology.[1] It means that in a collision domain there should be at most 5 segments tied together with 4 repeaters, with 3 segments containing active senders (i.e. terminals).

Details

According to the original Ethernet protocol, a signal sent out over the collision domain must reach every part of the network within a specified length of time. The 5-4-3 rule ensures this. Each segment and repeater that a signal goes through adds a small amount of time to the process, so the rule is designed to minimize transmission times of the signals.

For the purposes of this rule, a segment is in accordance with the IEEE definition: an electrical connection between networked devices.[2]

In the original 10BASE5 and 10BASE2 Ethernet varieties, a segment would therefore correspond to a single coax cable and any devices tapped into it. On modern twisted-pair Ethernet, a network segment corresponds to the individual connection between end station to network equipment or the connections between different pieces of network equipment.

This rule divides a collision domain into two types of physical segments: populated (user) segments, and unpopulated (link) segments. User segments have users' systems connected to them. Link segments are used to connect the network's repeaters together. The rule mandates that there can only be a maximum of five segments, connected through four repeaters, or concentrators, and only three of the five segments may contain user connections. This last requirement applies only to 10BASE5 and 10BASE2 Ethernet segments.[3]

This rule is also designated the 5-4-3-2-1 rule with there being two network segments and one collision domain.[4]

The 5-4-3 rule was created when 10BASE5 and 10BASE2 were the only types of Ethernet network available. The rule only applies to shared-access Ethernet backbones. The rule does not apply to switched Ethernet because each port on a switch constitutes a separate collision domain.

A repeater normally listens for the 0101 preamble and then locks onto the bit stream. Once locked on it would then repeat each bit out the other port(s). However some number of bits would be lost at the start while the repeater was locking onto the bit stream. As the frame propagated through each repeater the preamble would get shorter and shorter. Too many bits lost meant that NIC cards may not have enough preamble bits to lock on and the entire frame would be missed.

As each manufacturer of repeaters (hubs) did slightly different implementations each repeater operated differently. Each different repeater would lose more or less bits while locking on. Some would lose 1 or 2 while others could lose as many as 5 or 6 bits. You could create a network with more repeaters if you knew how each repeater operated. However this information was not always easy to obtain and difficult for users to calculate. Hence the 5-4-3 rules was created. It was easy to understand and worked in all cases. In a lab at DEC they knew how many bits their repeaters would lose and knowing this were able to create an 11 segment, 10 repeater, 3 active segment (11-10-3) network that was completely viable.

Ethernet way

An alternate configuration rule known as the Ethernet way allows 2 repeaters on the single network and does not allow any hosts on the connection between repeaters.[citation needed]

See also

References

  1. ^ Helmig, Johannes (28 October 1997). "Large Networks: 5-4-3 Rule". WindowsNetworking.com. Archived from the original on 3 September 2010.
  2. ^ "1.4.318", 802.3-2008 Part 3: Carrier sense multiple access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE, 26 December 2008, segment: The medium connection, including connectors, between Medium Dependent Interfaces (MDIs) in a CSMA/CD local area network.
  3. ^ An Educator's Guide to School Networks, Florida Center for Instructional Technology, retrieved 4 September 2010
  4. ^ Mitchell, Bradley. "The 5-4-3-2-1 Rule". About.com. Archived from the original on 3 September 2010.