In the mathematical fields of category theory and abstract algebra , a subquotient is a quotient object of a subobject . Subquotients are particularly important in abelian categories , and in group theory , where they are also known as sections , though this conflicts with a different meaning in category theory .
In the literature about sporadic groups wordings like «
H
{\displaystyle H}
is involved in
G
{\displaystyle G}
»[ 1] can be found with the apparent meaning of «
H
{\displaystyle H}
is a subquotient of
G
{\displaystyle G}
».
For example, of the 26 sporadic groups , the 20 subquotients of the monster group are referred to as the "Happy Family", whereas the remaining 6 as "pariah groups ".
A quotient of a subrepresentation of a representation (of, say, a group) might be called a subquotient representation; e.g., Harish-Chandra 's subquotient theorem.[ 2]
In constructive set theory , where the law of excluded middle does not necessarily hold, one can consider the relation subquotient of as replacing the usual order relation (s) on cardinals . When one has the law of the excluded middle, then a subquotient
X
{\displaystyle X}
of
Y
{\displaystyle Y}
is either the empty set or there is an onto function
Y
→
X
{\displaystyle Y\to X}
. This order relation is traditionally denoted
≤
∗
{\displaystyle \leq ^{\ast }}
. If additionally the axiom of choice holds, then
X
{\displaystyle X}
has a one-to-one function to
Y
{\displaystyle Y}
and this order relation is the usual
≤
{\displaystyle \leq }
on corresponding cardinals.
Order relation
The relation subquotient of is an order relation .
Proof of transitivity for groups
Let
H
′
/
H
″
{\displaystyle H'/H''}
be subquotient of
H
{\displaystyle H}
, furthermore
H
:=
G
′
/
G
″
{\displaystyle H:=G'/G''}
be subquotient of
G
{\displaystyle G}
and
φ
:
G
′
→
H
{\displaystyle \varphi \colon G'\to H}
be the canonical homomorphism . Then all vertical (
↓
{\displaystyle \downarrow }
) maps
φ
:
X
→
Y
,
g
↦
g
G
″
{\displaystyle \varphi \colon X\to Y,\;g\mapsto g\,G''}
G
{\displaystyle G}
≥
{\displaystyle \geq }
G
′
{\displaystyle G'}
≥
{\displaystyle \geq }
φ
−
1
(
H
′
)
{\displaystyle \varphi ^{-1}(H')}
≥
{\displaystyle \geq }
φ
−
1
(
H
″
)
{\displaystyle \varphi ^{-1}(H'')}
⊳
{\displaystyle \vartriangleright }
G
″
{\displaystyle G''}
φ
:
{\displaystyle \varphi \!:}
↓
{\displaystyle {\Big \downarrow }}
↓
{\displaystyle {\Big \downarrow }}
↓
{\displaystyle {\Big \downarrow }}
↓
{\displaystyle {\Big \downarrow }}
H
{\displaystyle H}
≥
{\displaystyle \geq }
H
′
{\displaystyle H'}
⊳
{\displaystyle \vartriangleright }
H
″
{\displaystyle H''}
⊳
{\displaystyle \vartriangleright }
{
1
}
{\displaystyle \{1\}}
with suitable
g
∈
X
{\displaystyle g\in X}
are surjective for the respective pairs
(
X
,
Y
)
∈
{\displaystyle (X,Y)\;\;\;\in }
{
(
G
′
,
H
)
{\displaystyle {\Bigl \{}{\bigl (}G',H{\bigr )}{\Bigr .}}
,
{\displaystyle ,}
(
ϕ
−
1
(
H
′
)
,
H
′
)
{\displaystyle {\bigl (}\phi ^{-1}(H'),H'{\bigr )}}
,
{\displaystyle ,}
(
ϕ
−
1
(
H
″
)
,
H
″
)
{\displaystyle {\bigl (}\phi ^{-1}(H''),H''{\bigr )}}
,
{\displaystyle ,}
(
G
″
,
{
1
}
)
}
.
{\displaystyle {\Bigl .}{\bigl (}G'',\{1\}{\bigr )}{\Bigr \}}.}
The preimages
φ
−
1
(
H
′
)
{\displaystyle \varphi ^{-1}\left(H'\right)}
and
φ
−
1
(
H
″
)
{\displaystyle \varphi ^{-1}\left(H''\right)}
are both subgroups of
G
′
{\displaystyle G'}
containing
G
″
,
{\displaystyle G'',}
and it is
φ
(
φ
−
1
(
H
′
)
)
=
H
′
{\displaystyle \varphi \left(\varphi ^{-1}\left(H'\right)\right)=H'}
and
φ
(
φ
−
1
(
H
″
)
)
=
H
″
{\displaystyle \varphi \left(\varphi ^{-1}\left(H''\right)\right)=H''}
, because every
h
∈
H
{\displaystyle h\in H}
has a preimage
g
∈
G
′
{\displaystyle g\in G'}
with
φ
(
g
)
=
h
{\displaystyle \varphi (g)=h}
. Moreover, the subgroup
φ
−
1
(
H
″
)
{\displaystyle \varphi ^{-1}\left(H''\right)}
is normal in
φ
−
1
(
H
′
)
.
{\displaystyle \varphi ^{-1}\left(H'\right).}
.
As a consequence, the subquotient
H
′
/
H
″
{\displaystyle H'/H''}
of
H
{\displaystyle H}
is a subquotient of
G
{\displaystyle G}
in the form
H
′
/
H
″
≅
φ
−
1
(
H
′
)
/
φ
−
1
(
H
″
)
{\displaystyle H'/H''\cong \varphi ^{-1}\left(H'\right)/\varphi ^{-1}\left(H''\right)}
.
See also
References
^ Griess, Robert L. (1982), "The Friendly Giant" , Inventiones Mathematicae , 69 : 1−102, Bibcode :1982InMat..69....1G , doi :10.1007/BF01389186 , hdl :2027.42/46608 , S2CID 123597150
^ Dixmier, Jacques (1996) [1974], Enveloping algebras , Graduate Studies in Mathematics , vol. 11, Providence, R.I.: American Mathematical Society , ISBN 978-0-8218-0560-2 , MR 0498740 p. 310