Photon sieve
A photon sieve is a device for focusing light using diffraction and interference. It consists of a flat sheet of material full of pinholes that are arranged in a pattern which is similar to the rings in a Fresnel zone plate, but a sieve brings light to much sharper focus than a zone plate. The sieve concept, first developed in 2001,[1] is versatile because the characteristics of the focusing behaviour can be altered to suit the application by manufacturing a sieve containing holes of several different sizes and different arrangement of the pattern of holes.
Photon sieves have applications to photolithography.[2] and are an alternative to lenses or mirrors in telescopes[3] and terahertz lenses and antennas.[4][conflicted source][5]
When the size of sieves is smaller than one wavelength of operating light, the traditional method mentioned above to describe the diffraction patterns is not valid. The vertorial theory must be used to approximate the diffraction of light from nanosieves.[6] In this theory, the combination of coupled-mode theory and multiple expansion method is used to give an analytical model, which can facilitate the demonstration of traditional devices such as lens, holograms, etc.[7]
References
- ^ Kipp, L.; Skibowski, M.; Johnson, R. L.; Berndt, R.; Adelung, R.; Harm, S.; Seemann, R. (2001). "Sharper images by focusing soft X-rays with photon sieves". Nature. 414 (6860): 184–188. Bibcode:2001Natur.414..184K. doi:10.1038/35102526. PMID 11700552. S2CID 3101158.
- ^ Menon, Rajesh; Gil, Dario; Barbastathis, George; Smith, Henry I. (2005). "Photon-sieve lithography". Journal of the Optical Society of America A. 22 (2): 342–5. Bibcode:2005JOSAA..22..342M. doi:10.1364/JOSAA.22.000342. PMID 15717565.
- ^ Andersen, Geoff (2006). "Photon sieve telescope: Imaging with 10 million pinholes". SPIE Newsroom. doi:10.1117/2.1200608.0358.
- ^ Minin, Igor V.; Minin, Oleg V. (2013). "Millimeter Wave Binary Photon Sieve Fresnel Zone Plate: FDTD Analysis" (PDF). Progress in Electromagnetics Research Letters. 43. PIERS: 149–153. doi:10.2528/PIERL13091614. ISSN 1937-6480.
- ^ Machado, Federico; Zagrajek, Przemysław; Monsoriu, Juan A.; Furlan, Walter D. (2018). "Terahertz Sieves". IEEE Transactions on Terahertz Science and Technology. 8 (1): 140–143. Bibcode:2018ITTST...8..140M. doi:10.1109/TTHZ.2017.2762292. hdl:10251/104245. ISSN 2156-342X. S2CID 37668487.
- ^ Huang, Kun; Liu, Hong; Garcia-Vidal, Francisco J.; Hong, Minghui; Luk'Yanchuk, Boris; Teng, Jinghua; Qiu, Cheng-Wei (2015). "Ultrahigh-capacity non-periodic photon sieves operating in visible light". Nature Communications. 6: 7059. Bibcode:2015NatCo...6.7059H. doi:10.1038/ncomms8059. PMID 25940659.
- ^ Huang, Kun; Liu, Hong; Si, Guangyuan; Wang, Qian; Lin, Jiao; Teng, Jinghua (2017). "Photon-nanosieve for ultrabroadband and large-angle-of-view holograms". Laser & Photonics Reviews. 11 (3). Bibcode:2017LPRv...1100025H. doi:10.1002/lpor.201700025.
- Andersen, Geoff (2005). "Large optical photon sieve" (PDF). Optics Letters. 30 (22): 2976–8. Bibcode:2005OptL...30.2976A. doi:10.1364/OL.30.002976. PMID 16315693.