Jump to content

Walsh–Lebesgue theorem

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Citation bot (talk | contribs) at 16:28, 23 March 2021 (Alter: url. URLs might have been anonymized. Add: isbn, s2cid. | Use this bot. Report bugs. | Suggested by Kline | Category:Theorems in approximation theory | via #UCB_Category 4/16). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

The Walsh–Lebesgue theorem is a famous result from harmonic analysis proved by the American mathematician Joseph L. Walsh in 1929, using results proved by Lebesgue in 1907.[1][2][3] The theorem states the following:

Let K be a compact subset of the Euclidean plane 2 such the relative complement of with respect to 2 is connected. Then, every real-valued continuous function on (i.e. the boundary of K) can be approximated uniformly on by (real-valued) harmonic polynomials in the real variables x and y.[4]

Generalizations

[edit]

The Walsh–Lebesgue theorem has been generalized to Riemann surfaces[5] and to n.

This Walsh-Lebesgue theorem has also served as a catalyst for entire chapters in the theory of function algebras such as the theory of Dirichlet algebras and logmodular algebras.[6]

In 1974 Anthony G. O'Farrell gave a generalization of the Walsh–Lebesgue theorem by means of the 1964 Browder–Wermer theorem[7] with related techniques.[8][9][10]

References

[edit]
  1. ^ Walsh, J. L. (1928). "Über die Entwicklung einer harmonischen Funktion nach harmonischen Polynomen". J. Reine Angew. Math. 159: 197–209.
  2. ^ Walsh, J. L. (1929). "The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions". Bull. Amer. Math. Soc. 35 (2): 499–544. doi:10.1090/S0002-9947-1929-1501495-4.
  3. ^ Lebesgue, H. (1907). "Sur le probléme de Dirichlet". Rendiconti del Circolo Matematico di Palermo. 24 (1): 371–402. doi:10.1007/BF03015070. S2CID 120228956.
  4. ^ Gamelin, Theodore W. (1984). "3.3 Theorem (Walsh-Lebesgue Theorem)". Uniform Algebras. American Mathematical Society. pp. 36–37. ISBN 9780821840498.
  5. ^ Bagby, T.; Gauthier, P. M. (1992). "Uniform approximation by global harmonic functions". Approximations by solutions of partial differential equations. Dordrecht: Springer. pp. 15–26 (p. 20). ISBN 9789401124362.
  6. ^ Walsh, J. L. (2000). Rivlin, Theodore J.; Saff, Edward B. (eds.). Joseph L. Walsh. Selected papers. Springer. pp. 249–250. ISBN 978-0-387-98782-8.
  7. ^ Browder, A.; Wermer, J. (August 1964). "A method for constructing Dirichlet algebras". Proceedings of the American Mathematical Society. 15 (4): 546–552. doi:10.1090/s0002-9939-1964-0165385-0. JSTOR 2034745.
  8. ^ O'Farrell, A. G (2012). "A Generalised Walsh-Lebesgue Theorem" (PDF). Proceedings of the Royal Society of Edinburgh, Section A. 73: 231–234. doi:10.1017/S0308210500016395.
  9. ^ O'Farrell, A. G. (1981). "Five Generalisations of the Weierstrass Approximation Theorem" (PDF). Proceedings of the Royal Irish Academy, Section A. 81 (1): 65–69.
  10. ^ O'Farrell, A. G. (1980). "Theorems of Walsh-Lebesgue Type" (PDF). In D. A. Brannan; J. Clunie (eds.). Aspects of Contemporary Complex Analysis. Academic Press. pp. 461–467.