Jump to content

Segre surface

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 04:08, 4 April 2021 (References: task, replaced: journal=The Quarterly Journal of Mathematics. Oxford. Second Series → journal=The Quarterly Journal of Mathematics |series=Second Series). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In algebraic geometry, a Segre surface, studied by Corrado Segre (1884) and Beniamino Segre (1951), is an intersection of two quadrics in 4-dimensional projective space. They are rational surfaces isomorphic to a projective plane blown up in 5 points with no 3 on a line, and are del Pezzo surfaces of degree 4, and have 16 rational lines. The term "Segre surface" is also occasionally used for various other surfaces, such as a quadric in 3-dimensional projective space, or the hypersurface

References

[edit]
  • Segre, Corrado (1884), "Etude des différentes surfaces du 4e ordre à conique double ou cuspidale (générale ou décomposée) considérées comme des projections de l'intersection de deux variétés quadratiques de l'espace à quatre dimensions", Mathematische Annalen, 24, Springer Berlin / Heidelberg: 313–444, doi:10.1007/BF01443412, ISSN 0025-5831
  • Segre, Beniamino (1951), "On the inflexional curve of an algebraic surface in S4", The Quarterly Journal of Mathematics, Second Series, 2 (1): 216–220, doi:10.1093/qmath/2.1.216, ISSN 0033-5606, MR 0044861