Jump to content

Grothendieck's connectedness theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Nempnet (talk | contribs) at 17:24, 10 April 2022 (added second author to footnotes, fixed ref anchor). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, Grothendieck's connectedness theorem [1], [2] states that if A is a complete Noetherian local ring whose spectrum is k-connected and f is in the maximal ideal, then Spec(A/fA) is (k − 1)-connected. Here a Noetherian scheme is called k-connected if its dimension is greater than k and the complement of every closed subset of dimension less than k is connected.[3]

It is a local analogue of Bertini's theorem.

See also

References

Bibliography

  • Grothendieck, Alexander; Raynaud, Michel (2005) [1968], Séminaire de Géométrie Algébrique du Bois Marie - 1962 - Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux - (SGA 2), Documents Mathématiques 4 (in French) (Updated ed.), Société Mathématique de France, pp. x+208, ISBN 2-85629-169-4
  • Lazarsfeld, Robert (2004), Positivity in Algebraic Geometry, Springer, ISBN 3-540-22533-1