Jump to content

Hyperstructure

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by UltimateDude101 (talk | contribs) at 16:31, 14 October 2022 (Marked the article as a stub because it consists only of definitions). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Hyperstructures are algebraic structures equipped with at least one multi-valued operation, called a hyperoperation. The largest classes of the hyperstructures are the ones called – structures.

A hyperoperation on a nonempty set is a mapping from to the nonempty power set , meaning the set of all nonempty subsets of , i.e.

For we define

and

is a semihypergroup if is an associative hyperoperation, i.e. for all

Furthermore, a hypergroup is a semihypergroup , where the reproduction axiom is valid, i.e. for all

References

  • AHA (Algebraic Hyperstructures & Applications). A scientific group at Democritus University of Thrace, School of Education, Greece. aha.eled.duth.gr
  • Applications of Hyperstructure Theory, Piergiulio Corsini, Violeta Leoreanu, Springer, 2003, ISBN 1-4020-1222-5, ISBN 978-1-4020-1222-8
  • Functional Equations on Hypergroups, László, Székelyhidi, World Scientific Publishing, 2012, ISBN 978-981-4407-00-7