Jump to content

Periodic point

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Will i am069420 (talk | contribs) at 02:40, 31 October 2023 (Iterated functions). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time.

Iterated functions

[edit]

Given a mapping f from a set X into itself,

a point x in X is called periodic point if there exists an n>0 so that

where fn is the nth iterate of f. The smallest positive integer n satisfying the above is called the prime period or least period of the point x. If every point in X is a periodic point with the same period n, then f is called periodic with period n (this is not to be confused with the notion of a periodic function).

If there exist distinct n and m such that

then x is called a preperiodic point. All periodic points are preperiodic.

If f is a diffeomorphism of a differentiable manifold, so that the derivative is defined, then one says that a periodic point is hyperbolic if

that it is attractive if

and it is repelling if

If the dimension of the stable manifold of a periodic point or fixed point is zero, the point is called a source; if the dimension of its unstable manifold is zero, it is called a sink; and if both the stable and unstable manifold have nonzero dimension, it is called a saddle or saddle point.

Examples

[edit]

A period-one point is called a fixed point.

The logistic map

exhibits periodicity for various values of the parameter r. For r between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence 0, 0, 0, …, which attracts all orbits). For r between 1 and 3, the value 0 is still periodic but is not attracting, while the value is an attracting periodic point of period 1. With r greater than 3 but less than there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and As the value of parameter r rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of r one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic).

Dynamical system

[edit]

Given a real global dynamical system with X the phase space and Φ the evolution function,

a point x in X is called periodic with period T if

The smallest positive T with this property is called prime period of the point x.

Properties

[edit]
  • Given a periodic point x with period T, then for all t in
  • Given a periodic point x then all points on the orbit γx through x are periodic with the same prime period.

See also

[edit]

This article incorporates material from hyperbolic fixed point on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.