Cooperating Validity Checker
This article may be too technical for most readers to understand.(November 2023) |
Developer(s) | Stanford University and University of Iowa |
---|---|
Initial release | 2022 |
Stable release | 1.0.8[1]
/ 31 August 2023 |
Written in | C++ |
Operating system | Windows, Linux, macOS |
Type | Theorem prover |
License | BSD 3-clause |
Website | cvc5 |
In computer science and mathematical logic, Cooperating Validity Checker (CVC) is a family of satisfiability modulo theories (SMT) solvers. The latest major versions of CVC are CVC4 and CVC5 (stylized cvc5); earlier versions include CVC, CVC Lite, and CVC3.[2] Both CVC4 and cvc5 support the SMT-LIB and TPTP input formats for solving SMT problems, and the SyGuS-IF format for program synthesis. Both CVC4 and cvc5 can output proofs that can be independently checked in the LFSC format, cvc5 additionally supports the Alethe and Lean 4 formats.[3][4] cvc5 has bindings for C++, Python, and Java.
CVC4 competed in SMT-COMP in the years 2014-2020,[5] and cvc5 has competed in the years 2021-2022.[6] CVC4 competed in SyGuS-COMP in the years 2015-2019,[7] and in CASC in 2013-2015.
CVC4 uses the DPLL(T) architecture,[8] and supports the theories of linear arithmetic over rationals and integers, fixed-width bitvectors,[9] floating-point arithmetic,[10] strings,[11] (co)-datatypes,[12] sequences (used to model dynamic arrays),[13] finite sets and relations,[14][15] separation logic,[16] and uninterpreted functions among others. cvc5 additionally supports finite fields.[17]
In addition to standard SMT and SyGuS solving, cvc5 supports abductive reasoning, which is the problem of constructing a formula B that can be conjoined with a formula A to prove a goal formula C.[18][19]
cvc5 has been subject to several independent test campaigns.[20]
Applications
CVC4 has been applied to the synthesis of recursive programs.[21] and to the verification of Amazon Web Services access policies.[22][23] CVC4 and cvc5 have been integrated with Coq[24] and Isabelle.[25] CVC4 is one of the back-end reasoners supported by CBMC, the C Bounded Model Checker.[26]
References
- ^ "Release cvc5-1.0.8 · cvc5/cvc5". GitHub. Retrieved 2023-11-29.
- ^ Barrett, Clark; Tinelli, Cesare (2018), Clarke, Edmund M.; Henzinger, Thomas A.; Veith, Helmut; Bloem, Roderick (eds.), "Satisfiability Modulo Theories", Handbook of Model Checking, Cham: Springer International Publishing, pp. 305–343, doi:10.1007/978-3-319-10575-8_11, ISBN 978-3-319-10575-8, retrieved 2023-11-29
- ^ Barbosa, Haniel; Reynolds, Andrew; Kremer, Gereon; Lachnitt, Hanna; Niemetz, Aina; Nötzli, Andres; Ozdemir, Alex; Preiner, Mathias; Viswanathan, Arjun; Viteri, Scott; Zohar, Yoni; Tinelli, Cesare; Barrett, Clark (2022). "Flexible Proof Production in an Industrial-Strength SMT Solver". In Blanchette, Jasmin; Kovács, Laura; Pattinson, Dirk (eds.). Automated Reasoning. Lecture Notes in Computer Science. Vol. 13385. Cham: Springer International Publishing. pp. 15–35. doi:10.1007/978-3-031-10769-6_3. ISBN 978-3-031-10769-6. S2CID 250164402.
- ^ (Barbosa et al. 2022, p. 417)
- ^ "Participants". SMT-COMP. Retrieved 2023-11-29.
- ^ "SMT-COMP". SMT-COMP. Retrieved 2023-11-29.
- ^
- Alur, Rajeev; Fisman, Dana; Singh, Rishabh; Solar-Lezama, Armando (2016-02-02). "Results and Analysis of SyGuS-Comp'15". Electronic Proceedings in Theoretical Computer Science. 202: 3–26. arXiv:1602.01170. doi:10.4204/EPTCS.202.3. ISSN 2075-2180. S2CID 2086015.
- Alur, Rajeev; Fisman, Dana; Singh, Rishabh; Solar-Lezama, Armando (2016-11-22). "SyGuS-Comp 2016: Results and Analysis". Electronic Proceedings in Theoretical Computer Science. 229: 178–202. arXiv:1611.07627. doi:10.4204/EPTCS.229.13. ISSN 2075-2180. S2CID 440389.
- Alur, Rajeev; Fisman, Dana; Singh, Rishabh; Solar-Lezama, Armando (2017-11-28). "SyGuS-Comp 2017: Results and Analysis". Electronic Proceedings in Theoretical Computer Science. 260: 97–115. arXiv:1711.11438. doi:10.4204/EPTCS.260.9. ISSN 2075-2180. S2CID 37464992.
- ^ Liang, Tianyi; Reynolds, Andrew; Tinelli, Cesare; Barrett, Clark; Deters, Morgan (2014). "A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions". In Biere, Armin; Bloem, Roderick (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 8559. Cham: Springer International Publishing. pp. 646–662. doi:10.1007/978-3-319-08867-9_43. ISBN 978-3-319-08867-9.
- ^ Hadarean, Liana; Bansal, Kshitij; Jovanović, Dejan; Barrett, Clark; Tinelli, Cesare (2014). "A Tale of Two Solvers: Eager and Lazy Approaches to Bit-Vectors". In Biere, Armin; Bloem, Roderick (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 8559. Cham: Springer International Publishing. pp. 680–695. doi:10.1007/978-3-319-08867-9_45. ISBN 978-3-319-08867-9.
- ^ Brain, Martin; Niemetz, Aina; Preiner, Mathias; Reynolds, Andrew; Barrett, Clark; Tinelli, Cesare (2019). Dillig, Isil; Tasiran, Serdar (eds.). "Invertibility Conditions for Floating-Point Formulas". Computer Aided Verification. Lecture Notes in Computer Science. Cham: Springer International Publishing: 116–136. doi:10.1007/978-3-030-25543-5_8. ISBN 978-3-030-25543-5.
- ^ Liang, Tianyi; Tsiskaridze, Nestan; Reynolds, Andrew; Tinelli, Cesare; Barrett, Clark (2015). "A Decision Procedure for Regular Membership and Length Constraints over Unbounded Strings". In Lutz, Carsten; Ranise, Silvio (eds.). Frontiers of Combining Systems. Lecture Notes in Computer Science. Vol. 9322. Cham: Springer International Publishing. pp. 135–150. doi:10.1007/978-3-319-24246-0_9. ISBN 978-3-319-24246-0.
- ^ Reynolds, Andrew; Blanchette, Jasmin Christian (2015). "A Decision Procedure for (Co)datatypes in SMT Solvers". In Felty, Amy P.; Middeldorp, Aart (eds.). Automated Deduction - CADE-25. Lecture Notes in Computer Science. Vol. 9195. Cham: Springer International Publishing. pp. 197–213. doi:10.1007/978-3-319-21401-6_13. ISBN 978-3-319-21401-6.
- ^ Sheng, Ying; Nötzli, Andres; Reynolds, Andrew; Zohar, Yoni; Dill, David; Grieskamp, Wolfgang; Park, Junkil; Qadeer, Shaz; Barrett, Clark; Tinelli, Cesare (2023-09-15). "Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences". Journal of Automated Reasoning. 67 (3): 32. doi:10.1007/s10817-023-09682-2. ISSN 1573-0670. S2CID 261829653.
- ^ Bansal, Kshitij; Reynolds, Andrew; Barrett, Clark; Tinelli, Cesare (2016). "A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT". In Olivetti, Nicola; Tiwari, Ashish (eds.). Automated Reasoning. Lecture Notes in Computer Science. Vol. 9706. Cham: Springer International Publishing. pp. 82–98. doi:10.1007/978-3-319-40229-1_7. ISBN 978-3-319-40229-1.
- ^ Meng, Baoluo; Reynolds, Andrew; Tinelli, Cesare; Barrett, Clark (2017). "Relational Constraint Solving in SMT". In de Moura, Leonardo (ed.). Automated Deduction – CADE 26. Lecture Notes in Computer Science. Vol. 10395. Cham: Springer International Publishing. pp. 148–165. doi:10.1007/978-3-319-63046-5_10. ISBN 978-3-319-63046-5.
- ^ Reynolds, Andrew; Iosif, Radu; Serban, Cristina; King, Tim (2016). "A Decision Procedure for Separation Logic in SMT" (PDF). In Artho, Cyrille; Legay, Axel; Peled, Doron (eds.). Automated Technology for Verification and Analysis. Lecture Notes in Computer Science. Vol. 9938. Cham: Springer International Publishing. pp. 244–261. doi:10.1007/978-3-319-46520-3_16. ISBN 978-3-319-46520-3. S2CID 6753369.
- ^ Ozdemir, Alex; Kremer, Gereon; Tinelli, Cesare; Barrett, Clark (2023). "Satisfiability Modulo Finite Fields". In Enea, Constantin; Lal, Akash (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 13965. Cham: Springer Nature Switzerland. pp. 163–186. doi:10.1007/978-3-031-37703-7_8. ISBN 978-3-031-37703-7. S2CID 257235627.
- ^ Reynolds, Andrew; Barbosa, Haniel; Larraz, Daniel; Tinelli, Cesare (2020-05-30). "Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis". Automated Reasoning. Lecture Notes in Computer Science. Vol. 12166. pp. 141–160. doi:10.1007/978-3-030-51074-9_9. ISBN 978-3-030-51073-2. PMC 7324138.
- ^ (Barbosa et al. 2022, p. 426)
- ^
- Bringolf, Mauro; Winterer, Dominik; Su, Zhendong (2023-01-05). "Finding and Understanding Incompleteness Bugs in SMT Solvers". Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. ASE '22. New York, NY, USA: Association for Computing Machinery. pp. 1–10. doi:10.1145/3551349.3560435. ISBN 978-1-4503-9475-8. S2CID 255441416.
- Sun, Maolin; Yang, Yibiao; Wen, Ming; Wang, Yongcong; Zhou, Yuming; Jin, Hai (2023-07-26). "Validating SMT Solvers via Skeleton Enumeration Empowered by Historical Bug-Triggering Inputs". 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). ICSE '23. Melbourne, Victoria, Australia: IEEE Press. pp. 69–81. doi:10.1109/ICSE48619.2023.00018. ISBN 978-1-6654-5701-9. S2CID 259860528.
- Niemetz, Aina; Preiner, Mathias; Barrett, Clark (2022). "Murxla: A Modular and Highly Extensible API Fuzzer for SMT Solvers". In Shoham, Sharon; Vizel, Yakir (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 13372. Cham: Springer International Publishing. pp. 92–106. doi:10.1007/978-3-031-13188-2_5. ISBN 978-3-031-13188-2. S2CID 251447764.
- Kim, Jongwook; So, Sunbeom; Oh, Hakjoo (2023-07-26). "Diver: Oracle-Guided SMT Solver Testing with Unrestricted Random Mutations". 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). ICSE '23. Melbourne, Victoria, Australia: IEEE Press. pp. 2224–2236. doi:10.1109/ICSE48619.2023.00187. ISBN 978-1-6654-5701-9. S2CID 259860926.
- "SMT Solver Validation Empowered by Large Pre-Trained Language Models | IEEE Conference Publication | IEEE Xplore". doi:10.1109/ase56229.2023.00180. S2CID 265055537. Retrieved 2023-11-29.
- Bringolf, Mauro (2021). Fuzz-testing SMT Solvers with Formula Weakening and Strengthening (Master Thesis thesis). ETH Zurich. doi:10.3929/ethz-b-000507582.
- ^ Berman, Shmuel (2021-10-17). "Programming-by-example by programming-by-example: Synthesis of looping programs". Companion Proceedings of the 2021 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity. SPLASH Companion 2021. New York, NY, USA: Association for Computing Machinery. pp. 19–21. arXiv:2108.08724. doi:10.1145/3484271.3484977. ISBN 978-1-4503-9088-0. S2CID 237213485.
- ^ Backes, John; Bolignano, Pauline; Cook, Byron; Dodge, Catherine; Gacek, Andrew; Luckow, Kasper; Rungta, Neha; Tkachuk, Oksana; Varming, Carsten (October 2018). Semantic-based Automated Reasoning for AWS Access Policies using SMT. IEEE. pp. 1–9. doi:10.23919/FMCAD.2018.8602994. ISBN 978-0-9835678-8-2. S2CID 52237693.
- ^ Rungta, Neha (2022). "A Billion SMT Queries a Day (Invited Paper)". In Shoham, Sharon; Vizel, Yakir (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 13371. Cham: Springer International Publishing. pp. 3–18. doi:10.1007/978-3-031-13185-1_1. ISBN 978-3-031-13185-1. S2CID 251447649.
- ^
- For CVC4: Ekici, Burak; Mebsout, Alain; Tinelli, Cesare; Keller, Chantal; Katz, Guy; Reynolds, Andrew; Barrett, Clark (2017). "SMTCoq: A Plug-In for Integrating SMT Solvers into Coq" (PDF). In Majumdar, Rupak; Kunčak, Viktor (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 10427. Cham: Springer International Publishing. pp. 126–133. doi:10.1007/978-3-319-63390-9_7. ISBN 978-3-319-63390-9. S2CID 206701576.
- For cvc5: (Barbosa et al. 2022, p. 425)
- For cvc5: Barbosa, Haniel; Keller, Chantal; Reynolds, Andrew; Viswanathan, Arjun; Tinelli, Cesare; Barrett, Clark (2023-06-03). "An Interactive SMT Tactic in Coq using Abductive Reasoning". EPiC Series in Computing. 94. EasyChair: 11–22. doi:10.29007/432m. S2CID 259070258.
- ^ Desharnais, Martin; Vukmirović, Petar; Blanchette, Jasmin; Wenzel, Makarius (2022). "Seventeen Provers Under the Hammer". DROPS-IDN/V2/Document/10.4230/LIPIcs.ITP.2022.8. Schloss-Dagstuhl - Leibniz Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2022.8. S2CID 251322787.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Kroening, Daniel; Tautschnig, Michael (2014). "CBMC – C Bounded Model Checker". In Ábrahám, Erika; Havelund, Klaus (eds.). Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science. Vol. 8413. Berlin, Heidelberg: Springer. pp. 389–391. doi:10.1007/978-3-642-54862-8_26. ISBN 978-3-642-54862-8.
- Barbosa, Haniel; Barrett, Clark; Brain, Martin; Kremer, Gereon; Lachnitt, Hanna; Mann, Makai; Mohamed, Abdalrhman; Mohamed, Mudathir; Niemetz, Aina; Nötzli, Andres; Ozdemir, Alex; Preiner, Mathias; Reynolds, Andrew; Sheng, Ying; Tinelli, Cesare (2022). "Cvc5: A Versatile and Industrial-Strength SMT Solver". In Fisman, Dana; Rosu, Grigore (eds.). Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science. Vol. 13243. Cham: Springer International Publishing. pp. 415–442. doi:10.1007/978-3-030-99524-9_24. ISBN 978-3-030-99524-9. S2CID 247857361.
- Barrett, Clark; Conway, Christopher L.; Deters, Morgan; Hadarean, Liana; Jovanović, Dejan; King, Tim; Reynolds, Andrew; Tinelli, Cesare (2011). "CVC4". In Gopalakrishnan, Ganesh; Qadeer, Shaz (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 6806. Berlin, Heidelberg: Springer. pp. 171–177. doi:10.1007/978-3-642-22110-1_14. ISBN 978-3-642-22110-1.