Jump to content

Tubulin domain

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Dcirovic (talk | contribs) at 17:56, 6 June 2016 (top: refs using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tubulin
kif1a head-microtubule complex structure in atp-form
Identifiers
SymbolTubulin
PfamPF00091
Pfam clanCL0442
InterProIPR003008
PROSITEPDOC00201
SCOP21tub / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Tubulin
kif1a head-microtubule complex structure in atp-form
Identifiers
SymbolTubulin
PfamPF00091
Pfam clanCL0442
InterProIPR003008
PROSITEPDOC00201
SCOP21tub / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Tubulin/FtsZ family, GTPase domain is an evolutionary conserved protein domain.

This domain is found in all tubulin chains,[1] as well as the bacterial FtsZ family of proteins.[2] These proteins are involved in polymer formation. Tubulin is the major component of microtubules, while FtsZ is the polymer-forming protein of bacterial cell division, it is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases,[3] this entry is the GTPase domain. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in bacteria and archaea.

References

  1. ^ Nogales E, Wolf SG, Downing KH (January 1998). "Structure of the alpha beta tubulin dimer by electron crystallography". Nature. 391 (6663): 199–203. doi:10.1038/34465. PMID 9428769.
  2. ^ Löwe J, Amos LA (January 1998). "Crystal structure of the bacterial cell-division protein FtsZ". Nature. 391 (6663): 203–6. doi:10.1038/34472. PMID 9428770.
  3. ^ Nogales E, Downing KH, Amos LA, Löwe J (June 1998). "Tubulin and FtsZ form a distinct family of GTPases". Nat. Struct. Biol. 5 (6): 451–8. doi:10.1038/nsb0698-451. PMID 9628483.
This article incorporates text from the public domain Pfam and InterPro: IPR003008