Jump to content

Brieskorn manifold

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Turgidson (talk | contribs) at 02:55, 26 February 2018 (more). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Brieskorn manifold or Brieskorn–Phạm manifold, introduced by Egbert Brieskorn (1966, 1966b), is the intersection of a small sphere around the origin with the singular hypersurface

studied by Frédéric Pham (1965).

Brieskorn manifolds give examples of exotic spheres.

References

  • Brieskorn, Egbert V. (1966), "Examples of singular normal complex spaces which are topological manifolds", Proceedings of the National Academy of Sciences, 55 (6): 1395–1397, doi:10.1073/pnas.55.6.1395, MR 0198497, PMC 224331, PMID 16578636
  • Brieskorn, Egbert (1966b), "Beispiele zur Differentialtopologie von Singularitäten", Inventiones Mathematicae, 2 (1): 1–14, doi:10.1007/BF01403388, MR 0206972
  • Hirzebruch, Friedrich; Mayer, Karl Heinz (1968), O(n)-Mannigfaligkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Mathematics, vol. 57, Berlin-New York: Springer-Verlag, doi:10.1007/BFb0074355, MR 0229251 This book describes Brieskorn's work relating exotic spheres to singularities of complex manifolds.
  • Pham, Frédéric (1965), "Formules de Picard-Lefschetz généralisées et ramification des intégrales", Bulletin de la Société Mathématique de France, 93: 333–367, ISSN 0037-9484, MR 0195868