Jump to content

Engel identity

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 87.212.1.40 (talk) at 17:42, 18 March 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Engel identity, named after Friedrich Engel, is a mathematical equation that is satisfied by all elements of a Lie ring, in the case of an Engel Lie ring, or by all the elements of a group, in the case of an Engel group. The Engel identity is the defining condition of an Engel group.

Formal definition

A Lie ring is defined as a nonassociative ring with multiplication that is anticommutative and satisfies the Jacobi identity with respect to the Lie bracket , defined for all elements in the ring . The Lie ring is defined to be an n-Engel Lie ring if and only if

  • for all in , the n-Engel identity

(n copies of ), is satisfied.[1]

In the case of a group , in the preceding definition, use the definition [x,y] = x−1y−1xy and replace by , where is the identity element of the group .[2]

See also

References

  1. ^ Traustason, Gunnar (1993). "Engel Lie-Algebras". Quart. J. Math. Oxford. 44 (3): 355–384. doi:10.1093/qmath/44.3.355.
  2. ^ Traustason, Gunnar. "Engel groups (a survey)" (PDF). {{cite journal}}: Cite journal requires |journal= (help)