Jump to content

Elementary amenable group

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bobamnertiopsis (talk | contribs) at 23:39, 17 June 2018 (→‎References: cite journal). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a group is called elementary amenable if it can be built up from finite groups and abelian groups by a sequence of simple operations that result in amenable groups when applied to amenable groups. Since finite groups and abelian groups are amenable, every elementary amenable group is amenable - however, the converse is not true.

Formally, the class of elementary amenable groups is the smallest subclass of the class of all groups that satisfies the following conditions:

  • it contains all finite and all abelian groups
  • if G is in the subclass and H is isomorphic to G, then H is in the subclass
  • it is closed under the operations of taking subgroups, forming quotients, and forming extensions
  • it is closed under directed unions.

The Tits alternative implies that any amenable linear group is locally virtually solvable; hence, for linear groups, amenability and elementary amenability coincide.

References

  • Chou, Ching (1980). "Elementary amenable groups". Illinois Journal of Mathematics. 24 (3): 396–407. MR 0573475.