Jump to content

HD 202628

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Gehenna1510 (talk | contribs) at 15:27, 30 October 2018 (CS1 error fixed). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

HD 202628

Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Microscopium
Right ascension 21h 18m 27.26879s[1]
Declination −43° 20′ 04.7450″[1]
Apparent magnitude (V) +6.75
Characteristics
Spectral type G2V[2]
Astrometry
Proper motion (μ) RA: +240.89[1] mas/yr
Dec.: +21.00[1] mas/yr
Parallax (π)40.95 ± 0.46 mas[1]
Distance79.6 ± 0.9 ly
(24.4 ± 0.3 pc)
Details
Mass1.08[3] M
Radius1.01[3] R
Luminosity1.00[3] L
Surface gravity (log g)4.50±0.02[4] cgs
Temperature5,833±11[4] K
Metallicity [Fe/H]0.002±0.009[4] dex
Rotational velocity (v sin i)2.64±0.11[4] km/s
Age600±450[4] Myr
Other designations
CD−43° 14464, GJ 825.2, HD 202628, HIP 105184, SAO 230622, LTT 8444, GJ 9730
Database references
SIMBADdata
Exoplanet Archivedata

HD 202628 is a G-type star in the constellation Microscopium with an elliptical (e=0.18) dust disc, inclined at 64°. The inner edge of the ring, which lies at around 158 AU from the star, is sharply defined.[2] This means that there is a likely planet responsible for this defined edge, and it has been calculated as orbiting between 86 and 158 AU from HD 202628.[5]

The HD 202628 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(years)
Eccentricity Inclination Radius
b (unconfirmed) > 1 M🜨 86-158[5] ~ 0.2
Disk 150–220 AU

References

  1. ^ a b c d e van Leeuwen, F. (2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics, 474 (2): 653–664, arXiv:0708.1752, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357.
  2. ^ a b Krist, John E.; et al. (2012), "Hubble Space Telescope Observations of the HD 202628 Debris Disk", The Astronomical Journal, 144 (2): 9, arXiv:1206.2078, Bibcode:2012AJ....144...45K, doi:10.1088/0004-6256/144/2/45, 45.
  3. ^ a b c Gáspár, András; Rieke, George H; Ballering, Nicholas (2016). "The Correlation between Metallicity and Debris Disk Mass". The Astrophysical Journal. 826 (2): 171. arXiv:1604.07403. Bibcode:2016ApJ...826..171G. doi:10.3847/0004-637X/826/2/171.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ a b c d e dos Santos, Leonardo A.; et al. (August 2016), "The Solar Twin Planet Search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars", Astronomy & Astrophysics, 592 (156): 8, arXiv:1606.06214, Bibcode:2016A&A...592A.156D, doi:10.1051/0004-6361/201628558, A156.
  5. ^ a b Nesvold, Erika R.; Kuchner, Marc J. (2015). "Gap Clearing by Planets in a Collisional Debris Disk". The Astrophysical Journal. 798 (2): 10. arXiv:1410.7784. Bibcode:2015ApJ...798...83N. doi:10.1088/0004-637X/798/2/83. 83.