Jump to content

Free regular set

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Cydebot (talk | contribs) at 09:27, 21 March 2019 (Robot - Speedily moving category Group actions to Category:Group actions (mathematics) per CFDS.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a free regular set is a subset of a topological space that is acted upon disjointly under a given group action.[1]

To be more precise, let X be a topological space. Let G be a group of homeomorphisms from X to X. Then we say that the action of the group G at a point is freely discontinuous if there exists a neighborhood U of x such that for all , excluding the identity. Such a U is sometimes called a nice neighborhood of x.

The set of points at which G is freely discontinuous is called the free regular set and is sometimes denoted by . Note that is an open set.

If Y is a subset of X, then Y/G is the space of equivalence classes, and it inherits the canonical topology from Y; that is, the projection from Y to Y/G is continuous and open.

Note that is a Hausdorff space.

Examples

The open set

is the free regular set of the modular group on the upper half-plane H. This set is called the fundamental domain on which modular forms are studied.

See also

References

  1. ^ Maskit, Bernard (1987). Discontinuous Groups in the Plane, Grundlehren der mathematischen Wissenschaften Volume 287. Springer Berlin Heidelberg. pp. 15–16. ISBN 978-3-642-64878-6.