Jump to content

Traveling plane wave

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Katharineamy (talk | contribs) at 23:38, 6 May 2019 (added Category:Waves; removed {{uncategorized}} using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics and physics, a traveling plane wave is a special case of plane wave, namely a field whose evolution in time can be described as simple translation of its values at a constant wave speed , along a fixed direction of propagation .

The wavefronts of a traveling plane wave in three-dimensional space.

Such a field can be written as

where is a function of a single real parameter . The function describes the profile of the wave, namely the value of the field at time , for each displacement . For each displacement , the moving plane perpendicular to at distance from the origin is called a wavefront. This plane too travels along the direction of propagation with velocity ; and the value of the field is then the same, and constant in time, at every one of its points.

The wave may be a scalar or vector field; its values are the values of .

A sinusoidal plane wave is a special case, when is a sinusoidal function of .

Properties

A traveling plane wave can be studied by ignoring the dimensions of space perpendicular to the vector ; that is, by considering the wave on a one-dimensional medium, with a single position coordinate .

For a scalar traveling plane wave in two or three dimensions, the gradient of the field is always collinear with the direction ; specifically, , where is the derivative of . Moreover, a traveling plane wave of any shape satisfies the partial differential equation

Plane traveling waves are also special solutions of the wave equation in an homogeneous medium.

See also

References