From Wikipedia, the free encyclopedia
In model theory and set theory , which are disciplines within mathematics, a model
B
=
⟨
B
,
F
⟩
{\displaystyle {\mathfrak {B}}=\langle B,F\rangle }
of some axiom system of set theory
T
{\displaystyle T}
in the language of set theory is an end extension of
A
=
⟨
A
,
E
⟩
{\displaystyle {\mathfrak {A}}=\langle A,E\rangle }
, in symbols
A
⊆
end
B
{\displaystyle {\mathfrak {A}}\subseteq _{\text{end}}{\mathfrak {B}}}
, if
A
{\displaystyle {\mathfrak {A}}}
is a substructure of
B
{\displaystyle {\mathfrak {B}}}
, and
b
∈
A
{\displaystyle b\in A}
whenever
a
∈
A
{\displaystyle a\in A}
and
b
F
a
{\displaystyle bFa}
hold, i.e., no new elements are added by
B
{\displaystyle {\mathfrak {B}}}
to the elements of
A
{\displaystyle A}
.
The following is an equivalent definition of end extension:
A
{\displaystyle {\mathfrak {A}}}
is a substructure of
B
{\displaystyle {\mathfrak {B}}}
, and
{
b
∈
A
:
b
E
a
}
=
{
b
∈
B
:
b
F
a
}
{\displaystyle \{b\in A:bEa\}=\{b\in B:bFa\}}
for all
a
∈
A
{\displaystyle a\in A}
.
For example,
⟨
B
,
∈
⟩
{\displaystyle \langle B,\in \rangle }
is an end extension of
⟨
A
,
∈
⟩
{\displaystyle \langle A,\in \rangle }
if
A
{\displaystyle A}
and
B
{\displaystyle B}
are transitive sets , and
A
⊆
B
{\displaystyle A\subseteq B}
.