From Wikipedia, the free encyclopedia
In mathematics , specifically abstract algebra , if
(
G
,
+
)
{\displaystyle (G,+)}
is an abelian group then
ν
:
G
→
R
{\displaystyle \nu \colon G\to \mathbb {R} }
is said to be a norm on
(
G
,
+
)
{\displaystyle (G,+)}
if:
ν
(
g
)
>
0
for all
g
≠
0
{\displaystyle \nu (g)>0{\text{ for all }}g\neq 0}
,
ν
(
g
+
h
)
≤
ν
(
g
)
+
ν
(
h
)
{\displaystyle \nu (g+h)\leq \nu (g)+\nu (h)}
,
ν
(
m
g
)
=
|
m
|
ν
(
g
)
for all
m
∈
Z
{\displaystyle \nu (mg)=|m|\,\nu (g){\text{ for all }}m\in \mathbb {Z} }
.
The norm
ν
{\displaystyle \nu }
is discrete if there is some real number
ρ
>
0
{\displaystyle \rho >0}
such that
ν
(
g
)
>
ρ
{\displaystyle \nu (g)>\rho }
whenever
g
≠
0
{\displaystyle g\neq 0}
.
Free abelian groups
An abelian group is a free abelian group if and only if it has a discrete norm.[ 1]
References
^ Steprāns, Juris (1985), "A characterization of free abelian groups", Proceedings of the American Mathematical Society , 93 (2): 347–349, doi :10.2307/2044776 , MR 0770551