Transvectant
Appearance
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (May 2017) |
In mathematical invariant theory, a transvectant is an invariant formed from n invariants in n variables using Cayley's Ω process.
Definition
If Q1,...,Qn are functions of n variables x = (x1,...,xn) and r ≥ 0 is an integer then the rth transvectant of these functions is a function of n variables given by
where Ω is Cayley's Ω process, the tensor product means take a product of functions with different variables x1,..., xn, and tr means set all the vectors xk equal.
Partial transvectants
This section is empty. You can help by adding to it. (September 2011) |
Examples
The zeroth transvectant is the product of the n functions.
The first transvectant is the Jacobian determinant of the n functions.
The second transvectant is a constant times the completely polarized form of the Hessian of the n functions.
Footnotes
References
- Olver, Peter J. (1999), Classical invariant theory, Cambridge University Press, ISBN 978-0-521-55821-1
- Olver, Peter J.; Sanders, Jan A. (2000), "Transvectants, modular forms, and the Heisenberg algebra", Advances in Applied Mathematics, 25 (3): 252–283, CiteSeerX 10.1.1.46.803, doi:10.1006/aama.2000.0700, ISSN 0196-8858, MR 1783553