Jump to content

Bray–Moss–Libby model

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Kstone999 (talk | contribs) at 08:39, 28 September 2019 (v2.02 - Fixing defaultsort / WP:WCW project (DEFAULTSORT missing for titles with special letters)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In premixed turbulent combustion, Bray–Moss–Libby (BML) model is a closure model for a scalar field, built on the assumption that the reaction sheet is infinitely thin compared with the turbulent scales, so that the scalar can be found either at the state of burnt gas or unburnt gas. The model is named after Kenneth Bray, J. B. Moss and Paul A. Libby[1][2].

Mathematical description[3][4]

Let us define a non-dimensional scalar variable or progress variable such that at the unburnt mixture and at the burnt gas side. For example, if is the unburnt gas temperature and is the burnt gas temperature, then the non-dimensional temperature can be defined as

The progress variable could be any scalar, i.e., we could have chosen the concentration of a reactant as a progress variable. Since the reaction sheet is infinitely thin, at any point in the flow field, we can find the value of to be either unity or zero. The transition from zero to unity occurs instantaneously at the reaction sheet. Therefore, the probability density function (suppressing the time variable ) for the progress variable is given by

where and are the probability of finding unburnt and burnt mixture, respectively and is the Dirac delta function. By definition, the normalization condition leads to

It can be seen that the mean progress variable,

is nothing but the probability of finding burnt gas at location . The density function is completely described by the mean progress variable.

Assuming constant pressure and constant molecular weight, ideal gas law can be shown to reduce to

where is the heat release parameter. Using the above relation, the mean density can be calculated as follows

The Favre averaging of the progress variable is given by

Combining the two expressions, we find

and hence

The density average is

General density function

If reaction sheet is not assumed to be thin, then there is a chance that one can find a value for in between zero and unity, although in reality, the reaction sheet is mostly thin compared to turbulent scales. Nevertheless, the general form the density function can be written as

where is the probability of finding the progress variable which is undergoing reaction (where transition from zero to unity is effected). Here, we have

where is negligible in most regions.

References

  1. ^ Bray, K. N. C., Libby, P. A., & Moss, J. B. (1985). Unified modeling approach for premixed turbulent combustion—Part I: General formulation. Combustion and flame, 61(1), 87–102.
  2. ^ Libby, P. A. (1985). Theory of normal premixed turbulent flames revisited. Progress in energy and combustion science, 11(1), 83–96.
  3. ^ Peters, N. (2000). Turbulent combustion. Cambridge university press.
  4. ^ Peters, N. (1992). Fifteen lectures on laminar and turbulent combustion. Ercoftac Summer School, 1428.