Jump to content

Cocycle category

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Monkbot (talk | contribs) at 22:10, 3 October 2019 (References: Task 16: replaced (1×) / removed (0×) deprecated |dead-url= and |deadurl= with |url-status=;). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In category theory, a branch of mathematics, the cocycle category of objects X, Y in a model category is a category in which the objects are pairs of maps and the morphisms are obvious commutative diagrams between them.[1] It is denoted by . (It may also be defined using the language of 2-category.)

One has: if the model category is right proper and is such that weak equivalences are closed under finite products,

is bijective.

References

  1. ^ Jardine, J. F. (2009). "Cocycle Categories". Algebraic Topology Abel Symposia Volume 4. Berlin Heidelberg: Springer. pp. 185–218. doi:10.1007/978-3-642-01200-6_8. ISBN 978-3-642-01200-6.