From Wikipedia, the free encyclopedia
In real analysis and measure theory , the Vitali convergence theorem , named after the Italian mathematician Giuseppe Vitali , is a generalization of the better-known dominated convergence theorem of Henri Lebesgue . It is a characterization of the convergence in
L
p
{\displaystyle L^{p}}
in terms of convergence in measure and a condition related to uniform integrability .
Statement of the theorem
Let
(
f
n
)
n
∈
N
⊆
L
p
(
X
,
τ
,
μ
)
,
f
∈
L
p
(
X
,
τ
,
μ
)
{\displaystyle (f_{n})_{n\in \mathbb {N} }\subseteq L^{p}(X,\tau ,\mu ),f\in L^{p}(X,\tau ,\mu )}
, with
1
≤
p
<
∞
{\displaystyle 1\leq p<\infty }
. Then,
f
n
→
f
{\displaystyle f_{n}\to f}
in
L
p
{\displaystyle L^{p}}
if and only if we have
(i)
f
n
{\displaystyle f_{n}}
converge in measure to
f
{\displaystyle f}
.
(ii) For every
ε
>
0
{\displaystyle \varepsilon >0}
there exists a measurable set
E
ε
{\displaystyle E_{\varepsilon }}
with
μ
(
E
ε
)
<
∞
{\displaystyle \mu (E_{\varepsilon })<\infty }
such that for every
G
∈
τ
{\displaystyle G\in \tau }
disjoint from
E
ε
{\displaystyle E_{\varepsilon }}
we have, for every
n
∈
N
{\displaystyle n\in \mathbb {N} }
∫
G
|
f
n
|
p
d
μ
<
ε
p
{\displaystyle \int _{G}|f_{n}|^{p}\,d\mu <\varepsilon ^{p}}
(iii) For every
ε
>
0
{\displaystyle \varepsilon >0}
there exists
δ
(
ε
)
>
0
{\displaystyle \delta (\varepsilon )>0}
such that, if
E
∈
τ
{\displaystyle E\in \tau }
and
μ
(
E
)
<
δ
(
ε
)
{\displaystyle \mu (E)<\delta (\varepsilon )}
then, for every
n
∈
N
{\displaystyle n\in \mathbb {N} }
we have
∫
E
|
f
n
|
p
d
μ
<
ε
p
{\displaystyle \int _{E}|f_{n}|^{p}\,d\mu <\varepsilon ^{p}}
Remark : If
μ
(
X
)
{\displaystyle \mu (X)}
is finite, then the second condition is trivially true (just pick a subset that covers all but a sufficiently small portion of the whole range). Also, (i) and (iii) implies the uniform integrability of
(
|
f
n
|
p
)
n
∈
N
{\displaystyle (|f_{n}|^{p})_{n\in \mathbb {N} }}
, and the uniform integrability of
(
|
f
n
|
p
)
n
∈
N
{\displaystyle (|f_{n}|^{p})_{n\in \mathbb {N} }}
implies (iii).
[ 1]
Outline of Proof
For proving statement 1, we use Fatou's lemma :
∫
X
|
f
|
d
μ
≤
lim inf
n
→
∞
∫
X
|
f
n
|
d
μ
{\displaystyle \int _{X}|f|\,d\mu \leq \liminf _{n\to \infty }\int _{X}|f_{n}|\,d\mu }
Using uniform integrability there exists
δ
>
0
{\displaystyle \delta >0}
such that we have
∫
E
|
f
n
|
d
μ
<
1
{\displaystyle \int _{E}|f_{n}|\,d\mu <1}
for every set
E
{\displaystyle E}
with
μ
(
E
)
<
δ
{\displaystyle \mu (E)<\delta }
By Egorov's theorem ,
f
n
{\displaystyle {f_{n}}}
converges uniformly on the set
E
C
{\displaystyle E^{C}}
.
∫
E
C
|
f
n
−
f
p
|
d
μ
<
1
{\displaystyle \int _{E^{C}}|f_{n}-f_{p}|\,d\mu <1}
for a large
p
{\displaystyle p}
and
∀
n
>
p
{\displaystyle \forall n>p}
. Using triangle inequality ,
∫
E
C
|
f
n
|
d
μ
≤
∫
E
C
|
f
p
|
d
μ
+
1
=
M
{\displaystyle \int _{E^{C}}|f_{n}|\,d\mu \leq \int _{E^{C}}|f_{p}|\,d\mu +1=M}
Plugging the above bounds on the RHS of Fatou's lemma gives us statement 1.
For statement 2, use
∫
X
|
f
−
f
n
|
d
μ
≤
∫
E
|
f
|
d
μ
+
∫
E
|
f
n
|
d
μ
+
∫
E
C
|
f
−
f
n
|
d
μ
{\displaystyle \int _{X}|f-f_{n}|\,d\mu \leq \int _{E}|f|\,d\mu +\int _{E}|f_{n}|\,d\mu +\int _{E^{C}}|f-f_{n}|\,d\mu }
, where
E
∈
F
{\displaystyle E\in {\mathcal {F}}}
and
μ
(
E
)
<
δ
{\displaystyle \mu (E)<\delta }
.
The terms in the RHS are bounded respectively using Statement 1, uniform integrability of
f
n
{\displaystyle f_{n}}
and Egorov's theorem for all
n
>
N
{\displaystyle n>N}
.
Converse of the theorem
Let
(
X
,
F
,
μ
)
{\displaystyle (X,{\mathcal {F}},\mu )}
be a positive measure space . If
μ
(
X
)
<
∞
{\displaystyle \mu (X)<\infty }
,
f
n
∈
L
1
(
μ
)
{\displaystyle f_{n}\in {\mathcal {L}}^{1}(\mu )}
and
lim
n
→
∞
∫
E
f
n
d
μ
{\displaystyle \lim _{n\to \infty }\int _{E}f_{n}\,d\mu }
exists for every
E
∈
F
{\displaystyle E\in {\mathcal {F}}}
then
{
f
n
}
{\displaystyle \{f_{n}\}}
is uniformly integrable.[ 2]
Citations
^ SanMartin, Jaime (2016). Teoría de la medida . p. 280.
^ Rudin, Walter (1986). Real and Complex Analysis . p. 133. ISBN 978-0-07-054234-1 .
References
Modern methods in the calculus of variations . 2007. ISBN 9780387357843 .
Folland, Gerald B. (1999). Real analysis . Pure and Applied Mathematics (New York) (Second ed.). New York: John Wiley & Sons Inc. pp. xvi+386. ISBN 0-471-31716-0 . MR 1681462
Rosenthal, Jeffrey S. (2006). A first look at rigorous probability theory (Second ed.). Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd. pp. xvi+219. ISBN 978-981-270-371-2 . MR 2279622
External links