Wikipedia list article
This is a list of limits for common functions . In this article, the terms a , b and c are constants with respect to x .
Limits for general functions
lim
x
→
c
f
(
x
)
=
L
{\displaystyle \lim _{x\to c}f(x)=L}
if and only if
∀
ε
>
0
∃
δ
>
0
0
<
|
x
−
c
|
<
δ
→
|
f
(
x
)
−
L
|
<
ε
{\displaystyle \forall \varepsilon >0\ \exists \delta >0\ 0<|x-c|<\delta \rightarrow |f(x)-L|<\varepsilon }
. This is the (ε, δ)-definition of limit .
The limit superior and limit inferior of a sequence are defined as
lim sup
n
→
∞
x
n
=
lim
n
→
∞
(
sup
m
≥
n
x
m
)
{\displaystyle \limsup _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\sup _{m\geq n}x_{m}\right)}
and
lim inf
n
→
∞
x
n
=
lim
n
→
∞
(
inf
m
≥
n
x
m
)
{\displaystyle \liminf _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\inf _{m\geq n}x_{m}\right)}
.
A function,
f
(
x
)
{\displaystyle f(x)}
, is said to be continuous at a point, c , if
lim
x
→
c
f
(
x
)
=
f
(
c
)
{\displaystyle \lim _{x\to c}f(x)=f(c)}
.
Operations on a single known limit
If
lim
x
→
c
f
(
x
)
=
L
then:
{\displaystyle {\text{If }}\lim _{x\to c}f(x)=L{\text{ then:}}}
lim
x
→
c
[
f
(
x
)
±
a
]
=
L
±
a
{\displaystyle \lim _{x\to c}\,[f(x)\pm a]=L\pm a}
lim
x
→
c
a
f
(
x
)
=
a
L
{\displaystyle \lim _{x\to c}\,af(x)=aL}
[ 1] [ 2] [ 3]
lim
x
→
c
1
f
(
x
)
=
1
L
{\displaystyle \lim _{x\to c}{\frac {1}{f(x)}}={\frac {1}{L}}}
[ 4] if L is not equal to 0.
lim
x
→
c
f
(
x
)
n
=
L
n
if
n
is a positive integer
{\displaystyle \lim _{x\to c}\,f(x)^{n}=L^{n}\qquad {\text{ if }}n{\text{ is a positive integer}}}
[ 1] [ 2] [ 3]
lim
x
→
c
f
(
x
)
1
n
=
L
1
n
if
n
is a positive integer, and if
n
is even, then
L
>
0
{\displaystyle \lim _{x\to c}\,f(x)^{1 \over n}=L^{1 \over n}\qquad {\text{ if }}n{\text{ is a positive integer, and if }}n{\text{ is even, then }}L>0}
[ 1] [ 3]
In general, if g(x) is continuous at L and
lim
x
→
c
f
(
x
)
=
L
{\displaystyle \lim _{x\to c}f(x)=L}
then
lim
x
→
c
g
(
f
(
x
)
)
=
g
(
L
)
{\displaystyle \lim _{x\to c}g\left(f(x)\right)=g(L)}
[ 1] [ 2]
Operations on two known limits
If
lim
x
→
c
f
(
x
)
=
L
1
and
lim
x
→
c
g
(
x
)
=
L
2
then:
{\displaystyle {\text{If }}\lim _{x\to c}f(x)=L_{1}{\text{ and }}\lim _{x\to c}g(x)=L_{2}{\text{ then:}}}
lim
x
→
c
[
f
(
x
)
±
g
(
x
)
]
=
L
1
±
L
2
{\displaystyle \lim _{x\to c}\,[f(x)\pm g(x)]=L_{1}\pm L_{2}}
[ 1] [ 2] [ 3]
lim
x
→
c
[
f
(
x
)
g
(
x
)
]
=
L
1
⋅
L
2
{\displaystyle \lim _{x\to c}\,[f(x)g(x)]=L_{1}\cdot L_{2}}
[ 1] [ 2] [ 3]
lim
x
→
c
f
(
x
)
g
(
x
)
=
L
1
L
2
if
L
2
≠
0
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ if }}L_{2}\neq 0}
[ 1] [ 2] [ 3]
Limits involving derivatives or infinitesimal changes
In these limits, the infinitesimal change
h
{\displaystyle h}
is often denoted
Δ
x
{\displaystyle \Delta x}
or
δ
x
{\displaystyle \delta x}
. If
f
(
x
)
{\displaystyle f(x)}
is differentiable at
x
{\displaystyle x}
,
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
f
′
(
x
)
{\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)}
. This is the definition of the derivative . All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x,
lim
h
→
0
f
∘
g
(
x
+
h
)
−
f
∘
g
(
x
)
h
=
f
′
[
g
(
x
)
]
g
′
(
x
)
{\displaystyle \lim _{h\to 0}{f\circ g(x+h)-f\circ g(x) \over h}=f'[g(x)]g'(x)}
. This is the chain rule .
lim
h
→
0
f
(
x
+
h
)
g
(
x
+
h
)
−
f
(
x
)
g
(
x
)
h
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
{\displaystyle \lim _{h\to 0}{f(x+h)g(x+h)-f(x)g(x) \over h}=f'(x)g(x)+f(x)g'(x)}
. This is the product rule .
lim
h
→
0
(
f
(
x
+
h
)
f
(
x
)
)
1
h
=
exp
(
f
′
(
x
)
f
(
x
)
)
{\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{\frac {1}{h}}=\exp \left({\frac {f'(x)}{f(x)}}\right)}
lim
h
→
0
(
f
(
x
(
1
+
h
)
)
f
(
x
)
)
1
h
=
exp
(
x
f
′
(
x
)
f
(
x
)
)
{\displaystyle \lim _{h\to 0}{\left({f(x(1+h)) \over {f(x)}}\right)^{1 \over {h}}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)}
If
f
(
x
)
{\displaystyle f(x)}
and
g
(
x
)
{\displaystyle g(x)}
are differentiable on an open interval containing c , except possibly c itself, and
lim
x
→
c
f
(
x
)
=
lim
x
→
c
g
(
x
)
=
0
or
±
∞
{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty }
, l'Hopital's rule can be used:
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}}
[ 2]
Inequalities
If
f
(
x
)
≤
g
(
x
)
{\displaystyle f(x)\leq g(x)}
for all x in an interval that contains c, except possibly c itself, and the limit of
f
(
x
)
{\displaystyle f(x)}
and
g
(
x
)
{\displaystyle g(x)}
both exist at c, then
lim
x
→
c
f
(
x
)
≤
lim
x
→
c
g
(
x
)
{\displaystyle \lim _{x\to c}f(x)\leq \lim _{x\to c}g(x)}
[ 5]
If
lim
x
→
c
f
(
x
)
=
lim
x
→
c
h
(
x
)
=
L
{\displaystyle {\text{If }}\lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L}
and
f
(
x
)
≤
g
(
x
)
≤
h
(
x
)
{\displaystyle f(x)\leq g(x)\leq h(x)}
for all x in an open interval that contains c, except possibly c itself,
lim
x
→
c
g
(
x
)
=
L
{\displaystyle \lim _{x\to c}g(x)=L}
. This is known as the squeeze theorem.[ 1] [ 2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c.
lim
x
→
c
a
=
a
{\displaystyle \lim _{x\to c}a=a}
[ 1] [ 2] [ 3]
Polynomials in x
lim
x
→
c
x
=
c
{\displaystyle \lim _{x\to c}x=c}
[ 1] [ 2] [ 3]
lim
x
→
c
(
a
x
+
b
)
=
a
c
+
b
{\displaystyle \lim _{x\to c}(ax+b)=ac+b}
lim
x
→
c
x
n
=
c
n
if
n
is a positive integer
{\displaystyle \lim _{x\to c}x^{n}=c^{n}\qquad {\mbox{ if }}n{\mbox{ is a positive integer}}}
[ 5]
lim
x
→
∞
x
/
a
=
{
∞
,
a
>
0
does not exist
,
a
=
0
−
∞
,
a
<
0
{\displaystyle \lim _{x\to \infty }x/a={\begin{cases}\infty ,&a>0\\{\text{does not exist}},&a=0\\-\infty ,&a<0\end{cases}}}
In general, if
p
(
x
)
{\displaystyle p(x)}
is a polynomial then, by the continuity of polynomials,
lim
x
→
c
p
(
x
)
=
p
(
c
)
{\displaystyle \lim _{x\to c}p(x)=p(c)}
[ 5]
This is also true for rational functions , as they are continuous on their domains.[ 5]
lim
x
→
c
x
a
=
c
a
.
{\displaystyle \lim _{x\to c}x^{a}=c^{a}.}
[ 5] In particular,
lim
x
→
∞
x
a
=
{
∞
,
a
>
0
1
,
a
=
0
0
,
a
<
0
{\displaystyle \lim _{x\to \infty }x^{a}={\begin{cases}\infty ,&a>0\\1,&a=0\\0,&a<0\end{cases}}}
lim
x
→
c
x
1
/
a
=
c
1
/
a
{\displaystyle \lim _{x\to c}x^{1/a}=c^{1/a}}
.[ 5] In particular,
lim
x
→
∞
x
1
/
a
=
lim
x
→
∞
x
a
=
∞
for any
a
>
0
{\displaystyle \lim _{x\to \infty }x^{1/a}=\lim _{x\to \infty }{\sqrt[{a}]{x}}=\infty {\text{ for any }}a>0}
[ 6]
lim
x
→
0
+
x
−
n
=
lim
1
x
n
=
+
∞
{\displaystyle \lim _{x\to 0^{+}}x^{-n}=\lim {\frac {1}{x^{n}}}=+\infty }
lim
x
→
0
−
x
−
n
=
lim
x
→
0
−
1
x
n
=
{
−
∞
,
if
n
is odd
+
∞
,
if
n
is even
{\displaystyle \lim _{x\to 0^{-}}x^{-n}=\lim _{x\to 0^{-}}{\frac {1}{x^{n}}}={\begin{cases}-\infty ,&{\text{if }}n{\text{ is odd}}\\+\infty ,&{\text{if }}n{\text{ is even}}\end{cases}}}
lim
x
→
∞
a
x
−
1
=
lim
x
→
∞
a
/
x
=
0
for any real
a
{\displaystyle \lim _{x\to \infty }ax^{-1}=\lim _{x\to \infty }a/x=0{\text{ for any real }}a}
Exponential functions
lim
x
→
c
e
x
=
e
c
{\displaystyle \lim _{x\to c}e^{x}=e^{c}}
, due to the continuity of
e
x
{\displaystyle e^{x}}
lim
x
→
∞
a
x
=
{
∞
,
a
>
1
1
,
a
=
1
0
,
0
<
a
<
1
{\displaystyle \lim _{x\to \infty }a^{x}={\begin{cases}\infty ,&a>1\\1,&a=1\\0,&0<a<1\end{cases}}}
lim
x
→
∞
a
−
x
=
{
0
,
a
>
1
1
,
a
=
1
∞
,
0
<
a
<
1
{\displaystyle \lim _{x\to \infty }a^{-x}={\begin{cases}0,&a>1\\1,&a=1\\\infty ,&0<a<1\end{cases}}}
[ 6]
lim
x
→
∞
a
x
=
lim
x
→
∞
a
1
/
x
=
{
1
,
a
>
0
0
,
a
=
0
does not exist
,
a
<
0
{\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{a}}=\lim _{x\to \infty }{a}^{1/x}={\begin{cases}1,&a>0\\0,&a=0\\{\text{does not exist}},&a<0\end{cases}}}
lim
x
→
∞
x
x
=
lim
x
→
∞
x
1
/
x
=
1
{\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{x}}=\lim _{x\to \infty }{x}^{1/x}=1}
lim
x
→
+
∞
(
x
x
+
k
)
x
=
e
−
k
{\displaystyle \lim _{x\to +\infty }\left({\frac {x}{x+k}}\right)^{x}=e^{-k}}
[ 2]
lim
x
→
0
(
1
+
x
)
1
x
=
e
{\displaystyle \lim _{x\to 0}\left(1+x\right)^{\frac {1}{x}}=e}
[ 2]
lim
x
→
0
(
1
+
k
x
)
m
x
=
e
m
k
{\displaystyle \lim _{x\to 0}\left(1+kx\right)^{\frac {m}{x}}=e^{mk}}
lim
x
→
+
∞
(
1
+
1
x
)
x
=
e
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {1}{x}}\right)^{x}=e}
[ 7]
lim
x
→
+
∞
(
1
−
1
x
)
x
=
1
e
{\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}}
lim
x
→
+
∞
(
1
+
k
x
)
m
x
=
e
m
k
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}
[ 6]
lim
x
→
−
∞
(
1
+
k
x
)
m
x
=
e
m
k
{\displaystyle \lim _{x\to -\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}
lim
x
→
−
∞
(
1
+
1
x
)
x
=
e
{\displaystyle \lim _{x\to -\infty }\left(1+{\frac {1}{x}}\right)^{x}=e}
lim
x
→
0
(
1
+
a
(
e
−
x
−
1
)
)
−
1
x
=
e
a
{\displaystyle \lim _{x\to 0}\left(1+a\left({e^{-x}-1}\right)\right)^{-{\frac {1}{x}}}=e^{a}\qquad }
. This limit can be derived from this limit .
Sums, products and composites
lim
x
→
0
x
e
−
x
=
0
{\displaystyle \lim _{x\to 0}xe^{-x}=0}
lim
x
→
∞
x
e
−
x
=
0
{\displaystyle \lim _{x\to \infty }xe^{-x}=0}
lim
x
→
0
(
a
x
−
1
x
)
=
ln
a
,
∀
a
>
0
{\displaystyle \lim _{x\to 0}\left({\frac {a^{x}-1}{x}}\right)=\ln {a},\qquad \forall ~a>0}
[ 4] [ 7]
lim
x
→
0
(
e
x
−
1
x
)
=
1
{\displaystyle \lim _{x\to 0}\left({\frac {e^{x}-1}{x}}\right)=1}
lim
x
→
0
(
e
a
x
−
1
x
)
=
a
{\displaystyle \lim _{x\to 0}\left({\frac {e^{ax}-1}{x}}\right)=a}
Logarithmic functions
Natural logarithms
lim
x
→
c
ln
x
=
ln
c
{\displaystyle \lim _{x\to c}\ln {x}=\ln c}
, due to the continuity of
ln
x
{\displaystyle \ln {x}}
. In particular,
lim
x
→
0
+
log
x
=
−
∞
{\displaystyle \lim _{x\to 0^{+}}\log x=-\infty }
lim
x
→
∞
log
x
=
∞
{\displaystyle \lim _{x\to \infty }\log x=\infty }
lim
x
→
1
ln
(
x
)
x
−
1
=
1
{\displaystyle \lim _{x\to 1}{\frac {\ln(x)}{x-1}}=1}
lim
x
→
0
ln
(
x
+
1
)
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\ln(x+1)}{x}}=1}
[ 7]
lim
x
→
0
−
ln
(
1
+
a
(
e
−
x
−
1
)
)
x
=
a
{\displaystyle \lim _{x\to 0}{\frac {-\ln \left(1+a\left({e^{-x}-1}\right)\right)}{x}}=a}
. This limit follows from L'Hôpital's rule .
lim
x
→
0
+
x
ln
x
=
0
{\displaystyle \lim _{x\to 0^{+}}x\ln x=0}
lim
x
→
∞
ln
x
x
=
0
{\displaystyle \lim _{x\to \infty }{\frac {\ln x}{x}}=0}
[ 6]
Logarithms to arbitrary bases
For a > 1,
lim
x
→
0
+
log
a
x
=
−
∞
{\displaystyle \lim _{x\to 0^{+}}\log _{a}x=-\infty }
lim
x
→
∞
log
a
x
=
∞
{\displaystyle \lim _{x\to \infty }\log _{a}x=\infty }
For a < 1,
lim
x
→
0
+
log
a
x
=
∞
{\displaystyle \lim _{x\to 0^{+}}\log _{a}x=\infty }
lim
x
→
∞
log
a
x
=
−
∞
{\displaystyle \lim _{x\to \infty }\log _{a}x=-\infty }
Trigonometric functions
If
x
{\displaystyle x}
is expressed in radians:
lim
x
→
a
sin
x
=
sin
a
{\displaystyle \lim _{x\to a}\sin x=\sin a}
lim
x
→
a
cos
x
=
cos
a
{\displaystyle \lim _{x\to a}\cos x=\cos a}
These limits both follow from the continuity of sin and cos.
lim
x
→
0
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
.[ 7] Or, in general,
lim
x
→
0
sin
a
x
a
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{ax}}=1}
, for a not equal to 0.
lim
x
→
0
sin
a
x
x
=
a
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{x}}=a}
lim
x
→
0
sin
a
x
b
x
=
a
b
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{bx}}={\frac {a}{b}}}
, for b not equal to 0.
lim
x
→
∞
x
sin
(
1
x
)
=
1
{\displaystyle \lim _{x\to \infty }x\sin \left({\frac {1}{x}}\right)=1}
lim
x
→
0
1
−
cos
x
x
=
0
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=0}
[ 4]
lim
x
→
0
1
−
cos
x
x
2
=
1
2
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}}
lim
x
→
n
±
tan
(
π
x
+
π
2
)
=
∓
∞
{\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty }
, for integer n .
lim
n
→
∞
sin
sin
…
sin
(
x
0
)
⏟
n
=
0
{\displaystyle \lim _{n\to \infty }\ \underbrace {\sin \ \sin \ \ldots \sin(x_{0})} _{n}=0}
, where x0 is an arbitrary real number.
lim
n
→
∞
cos
cos
…
cos
(
x
0
)
⏟
n
=
d
{\displaystyle \lim _{n\to \infty }\ \underbrace {\cos \ \cos \ \ldots \cos(x_{0})} _{n}=d}
, where d is Dottie's number. x0 can be any arbitrary real number.
Sums
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence.
lim
n
→
∞
∑
k
=
1
n
1
k
=
∞
{\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k}}=\infty }
. This is known as the harmonic series.[ 6]
lim
n
→
∞
∑
k
=
1
n
(
1
k
−
log
k
)
=
γ
{\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}\left({\frac {1}{k}}-\log k\right)=\gamma }
. This is the Euler Mascheroni constant.
Notable special limits
lim
n
→
∞
n
n
!
n
=
e
{\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e}
lim
n
→
∞
(
n
!
)
1
/
n
=
∞
{\displaystyle \lim _{n\to \infty }\left(n!\right)^{1/n}=\infty }
. This can be proven by considering the inequality
e
x
≥
x
n
n
!
{\displaystyle e^{x}\geq {\frac {x^{n}}{n!}}}
at
x
=
n
{\displaystyle x=n}
.
lim
n
→
∞
2
n
2
−
2
+
2
+
...
+
2
⏟
n
=
π
{\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+{\text{...}}+{\sqrt {2}}}}}}}} _{n}=\pi }
. This can be derived from Viète's formula for pi.
Limiting behavior
Asymptotic equivalences
Asymptotic equivalences ,
f
(
x
)
∼
g
(
x
)
{\displaystyle f(x)\sim g(x)}
, are true if
lim
x
→
∞
f
(
x
)
g
(
x
)
=
1
{\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=1}
. Therefore, they can also be reframed as limits. Some notable asymptotic equivalences include
lim
x
→
∞
x
/
ln
x
π
(
x
)
=
1
{\displaystyle \lim _{x\to \infty }{\frac {x/\ln x}{\pi (x)}}=1}
, due to the prime number theorem ,
π
(
x
)
∼
x
ln
x
{\displaystyle \pi (x)\sim {\frac {x}{\ln x}}}
, where π(x) is the prime counting function .
lim
n
→
∞
2
π
n
(
n
e
)
n
n
!
=
1
{\displaystyle \lim _{n\to \infty }{\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{n!}}=1}
, due to Stirling's approximation ,
n
!
∼
2
π
n
(
n
e
)
n
{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}
.
Big O notation
The behaviour of functions described by Big O notation can also be described by limits. For example
f
(
x
)
∈
O
(
g
(
x
)
)
{\displaystyle f(x)\in {\mathcal {O}}(g(x))}
if
lim sup
x
→
∞
|
f
(
x
)
|
g
(
x
)
<
∞
{\displaystyle \limsup _{x\to \infty }{\frac {|f(x)|}{g(x)}}<\infty }
References