Jump to content

Nuclear spectroscopy

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 07:41, 25 March 2020 (Alter: title, template type. Add: displayauthors, pages, issue, volume, journal, pmid, isbn, chapter, chapter-url, author pars. 1-30. Removed or converted URL. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Activated by User:AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Nuclear spectroscopy is a superordinate concept of methods that uses properties of a nucleus to probe material properties.[1][2][3] By emission or absorption of radiation from the nucleus information of the local structure is obtained, as an interaction of an atom with its closest neighbours. Or a radiation spectrum of the nucleus is detected. Most methods base on hyperfine interactions, which are the interaction of the nucleus with its interaction of its atom's electrions and their interaction with the nearest neighbor atoms as well as external fields. Nuclear spectroscopy is mainly applied to solids and liquids, rarely in gases. Its methods are important tools in condensed matter physics[4][5] and solid state chemistry[6].

Methods

In nuclear physics these methods are used to study properties of the nucleus itself.

Methods for studies of the nucleus:

Methods for condensed matter studies:

References

  1. ^ "Nuclear Spectroscopy - an overview: ScienceDirect Topics". www.sciencedirect.com. ScienceDirect. Retrieved 2019-12-08.
  2. ^ Glascock, Michael (2013-11-01). "Nuclear Spectroscopy". Treatise on Geochemistry. Researchgate. pp. 273–290. doi:10.1016/B978-0-08-095975-7.01419-4. ISBN 9780080983004. Retrieved 2019-12-08. {{cite book}}: |website= ignored (help)
  3. ^ Garrett, P. E.; Rodríguez, T. R.; Varela, A. D.; Green, K. L.; Bangay, J.; Finlay, A.; Austin RAE; Ball, G. C.; Bandyopadhyay, D. S.; Bildstein, V.; Colosimo, S.; Cross, D. S.; Demand, G. A.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Jigmeddorj, B.; Jolie, J.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Orce, J. N.; Pearson, C. J.; Phillips, A. A.; Radich, A. J.; Rand, E. T.; Schumaker, M. A.; Svensson, C. E.; Sumithrarachchi, C. (2019-10-03). "Synopsis: Nuclear Spectroscopy Reveals New Shapes of Excited Nuclei". Physical Review Letters. 123 (14). U.S.: American Physical Society: 142502. doi:10.1103/physrevlett.123.142502. PMID 31702191. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  4. ^ Nuclear condensed matter physics, Günter Schatz and Alois Weidinger, ISBN 978-0471954798
  5. ^ Th. Wichert, N. Achtziger, H. Metzner, R. Sielemann: Perturbed angular correlation. In: G. Langouche (Hrsg.): Hyperfine Interactions of Defects in Semiconductors. Elsevier, Amsterdam 1992, ISBN 0-444-89134-X, S. 77.
  6. ^ Methods in Physical Chemistry, Rolf Schäfer, Peter C. Schmidt, Print ISBN 9783527327454, Online ISBN 9783527636839, doi:10.1002/9783527636839
  7. ^ Garibaldi, F.; Hashimoto, O.; Lerose, J. J.; Markowitz, P.; Nakamura, S. N.; Reinhold, J.; Tang, L. (2011). "Hypernuclear Spectroscopy". Journal of Physics: Conference Series. 299 (1): 012013. Bibcode:2011JPhCS.299a2013G. doi:10.1088/1742-6596/299/1/012013.