Jump to content

SCHEMA (bioinformatics)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 16:00, 16 April 2020 (Open access bot: doi added to citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

SCHEMA is a computational algorithm used in protein engineering to identify fragments of proteins (called schemas) that can be recombined without disturbing the integrity of the proteins' three-dimensional structure.[1] The algorithm calculates the interactions between a protein's different amino acid residues to determine which interactions may be disrupted by swapping structural domains of the protein. By minimizing these disruptions, SCHEMA can be used to engineer chimeric proteins that stably fold and may have altered function relative to their parent proteins.[2] SCHEMA algorithm has been applied in the recombinant libraries of distantly related β-lactamases.[3]

References

  1. ^ Voigt, CA; Martinez, C; Wang, ZG; Mayo, SL; Arnold, FH; et al. (June 2002). "Protein building blocks preserved by recombination". Nature Structural Biology. 9 (7): 553–558. doi:10.1038/nsb805. PMID 12042875.
  2. ^ Otey, CR; Landwehr, M; Endelman, JB; Hiraga, K; Bloom, JD; Arnold, FH (May 2006). "Structure-guided recombination creates an artificial family of cytochromes P450". PLoS Biology. 4 (5): e112. doi:10.1371/journal.pbio.0040112. PMC 1431580. PMID 16594730.{{cite journal}}: CS1 maint: unflagged free DOI (link) Open access icon
  3. ^ Meyer, M; Hochrein, L.; Arnold, F (2006). "Structure-guided SCHEMA recombination of distantly related beta-lactamases". Protein Eng Des Sel. 19: 563–570. doi:10.1093/protein/gzl045. PMID 17090554.