Chazy equation
Appearance
In mathematics, the Chazy equation is the differential equation
It was introduced by Jean Chazy (1909, 1911) as an example of a third-order differential equation with a movable singularity that is a natural boundary for its solutions.
One solution is given by the Eisenstein series
Acting on this solution by the group SL2 gives a 3-parameter family of solutions.
References
- Chazy, J. (1909), "Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles", C. R. Acad. Sci. Paris (149)
- Chazy, J. (1911), "Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes", Acta Mathematica, 34: 317–385, doi:10.1007/BF02393131
- Clarkson, Peter A.; Olver, Peter J. (1996), "Symmetry and the Chazy equation", Journal of Differential Equations, 124 (1): 225–246, Bibcode:1996JDE...124..225C, doi:10.1006/jdeq.1996.0008, MR 1368067