Jump to content

Ternary quartic

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Cryptopocalypse (talk | contribs) at 01:35, 24 April 2020 (See also: Capitalization). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a ternary quartic form is a degree 4 homogeneous polynomial in three variables.

Hilbert's theorem

Hilbert (1888) showed that a positive semi-definite ternary quartic form over the reals can be written as a sum of three squares of quadratic forms.

Invariant theory

Table 2 from Noether's dissertation (Noether 1908) on invariant theory. This table collects 202 of the 331 invariants of ternary biquadratic forms. These forms are graded in two variables x and u. The horizontal direction of the table lists the invariants with increasing grades in x, while the vertical direction lists them with increasing grades in u.

The ring of invariants is generated by 7 algebraically independent invariants of degrees 3, 6, 9, 12, 15, 18, 27 (discriminant) (Dixmier 1987), together with 6 more invariants of degrees 9, 12, 15, 18, 21, 21, as conjectured by Shioda (1967). Salmon (1879) discussed the invariants of order up to about 15.

The Salmon invariant is a degree 60 invariant vanishing on ternary quartics with an inflection bitangent. (Dolgachev 2012, 6.4)

Catalecticant

The catalecticant of a ternary quartic is the resultant of its 6 second partial derivatives. It vanishes when the ternary quartic can be written as a sum of five 4th powers of linear forms.

See also

References

  • Cohen, Teresa (1919), "Investigations on the Plane Quartic", American Journal of Mathematics, 41 (3): 191–211, doi:10.2307/2370332, hdl:2027/mdp.39015079994953, ISSN 0002-9327, JSTOR 2370332
  • Dixmier, Jacques (1987), "On the projective invariants of quartic plane curves", Advances in Mathematics, 64 (3): 279–304, doi:10.1016/0001-8708(87)90010-7, ISSN 0001-8708, MR 0888630
  • Hilbert, David (1888), "Ueber die Darstellung definiter Formen als Summe von Formenquadraten", Mathematische Annalen, 32 (3): 342–350, doi:10.1007/BF01443605, ISSN 0025-5831
  • Noether, Emmy (1908), "Über die Bildung des Formensystems der ternären biquadratischen Form (On Complete Systems of Invariants for Ternary Biquadratic Forms)", Journal für die Reine und Angewandte Mathematik, 134: 23–90 and two tables, archived from the original on 2013-03-08.
  • Salmon, George (1879) [1852], A treatise on the higher plane curves, Hodges, Foster and Figgis, ISBN 978-1-4181-8252-6, MR 0115124
  • Shioda, Tetsuji (1967), "On the graded ring of invariants of binary octavics", American Journal of Mathematics, 89 (4): 1022–1046, doi:10.2307/2373415, ISSN 0002-9327, JSTOR 2373415, MR 0220738
  • Thomsen, H. Ivah (1916), "Some Invariants of the Ternary Quartic", American Journal of Mathematics, 38 (3): 249–258, doi:10.2307/2370450, ISSN 0002-9327, JSTOR 2370450