Jump to content

Javier Martín-Torres

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ser Amantio di Nicolao (talk | contribs) at 01:56, 25 April 2020 (References: add authority control). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Javier Martín-Torres (born 27 July 1970) is a Spanish physicist with interests in atmospheric sciences (mainly Earth, Mars, and exoplanet atmospheres), geophysics, and astrobiology.[1][2] He has published over 150 scientific papers in these areas, and contributed to more than 500 presentations at international conferences.

He is a chaired professor in Atmospheric Sciences at Luleå Tekniska Universitet[3][4][5] (LTU), Sweden, and Senior Research Scientist of the Spanish Research Council,[6] assigned to the Instituto Andaluz de Ciencias de la Tierra,[7][8] located in Armilla, Granada, Spain. He is also a visiting professor at the School of Physics and Astronomy at the University of Edinburgh,[9][10] and a Specially Appointed Professor at Okayama University.[11][12] Previously he has worked for ESA, the California Institute of Technology, Lunar and Planetary Laboratory, and 10 years for NASA at the Langley Research Center and Jet Propulsion Laboratory.

Mars research

Martin-Torres is the principal investigator of the HABIT (HabitAbility: Brine, Irradiation and Temperature) instrument,[13] which will travel to Mars as part of the scientific payload of the ExoMars 2020 mission[14][15] to investigate, amongst other things, the water exchange cycle between the atmosphere and the Martian regolith.

Martin-Torres is also a Co-I on the Mars Science Laboratory/Curiosity rover, ExoMars Trace Gas Orbiter ACS instrument, and ISEM/ExoMars rover.

He has been the scientist responsible for the REMS instrument[16] in NASA's Curiosity rover,[17] which since 2012 investigates the habitability of Mars, and co-investigator of 5 space missions of NASA and ESA.

Martin-Torres is co-author of the latest reported discoveries about Martian environment, namely, the presence of fixed nitrogen,[18] native organics in Martian ground,[19] the detection of methane plumes in the atmosphere[20] and, remarkably, the daily formation of liquid aqueous solutions on the soil (Transient liquid water and water activity at Gale crater on Mars[21]).

Transient liquid water on Mars

The article Transient liquid water and water activity at Gale crater on Mars,[22] reported the existence of a daily cycle of water exchange between the atmospheric boundary layer and the ground, including a phase during which the water remains in a transient liquid state. This is possible thanks to the presence in the soil of perchlorates, a highly hygroscopic kind of chlorine salts which seem to be ubiquitous over the Martian surface. These salts have the capability of catching water vapour from the environment up to the point of becoming solved in it forming concentrated solutions or brines. It is an extreme case of hygroscopy known as deliquescence.

The eutectic temperature of these brines allows its permanence in liquid state under the registered Martian environmental conditions in the study area of Curiosity, close to the equator, where they are the least favourable for this to happen. Therefore, it is expected that the phenomenon is more intense in terms of duration of the liquid phase in higher latitudes.

The presence of liquid water on present day Mars entails transcendent consequences in a number of aspects of the planet's exploration. Firstly, it casts a new light on the comprehension of Martian environment, and can be the key to understand some morphological features of the surface, such as the so-called Recurrent Slope Lineae (RSLs). In addition, the discovery has posed the necessity for taking special precautions to avoid biological contamination of the planet with terrestrial organisms carried on board the spacecrafts to be sent in the next missions, since the availability of liquid water multiply the possibilities for them to survive and thrive in certain places. Finally, water can be a valuable in-situ resource at the disposal of a crew which is eventually sent to Mars someday.

However, the brines themselves have not been monitored yet, and a quantification of the phenomenon is still missing. This is what the Brine Observation Transition to Liquid Experiment (BOTTLE, one of the units composing HABIT instrument) is being developed for.

Radiative Transfer modelling

Martin-Torres has developed non-Local Thermodynamic Equilibrium models to explain the emissions of some of the main emitters in the infrared (ozone, methane, nitric oxide, hydroxyl, dinitrogen monoxide, nitrogen dioxide); and has been part of the Science Team of MIPAS/Envisat, SABER/TIMED, and Orbiting Carbon Observatory.

Martin-Torres is author of the line-by radiative transfer code FUTBOLIN (FUll Transfer By Optimized LINe by line), which is widely used to model radiative processes in the atmosphere. It has been used to model the Earth's atmosphere and the atmospheres like those of Mars, Venus, and Titan, and simulations of Earthshine for exoplanet applications.

Selected publications

  • F. Javier Martín-Torres and María-Paz Zorzano, The Fate of Freedom of a Space Exploration Mission Encountering Life and the Liberty of the “Encountered” Extra-Terrestrial Beings, chapter of the book The Meaning of Liberty Beyond Earth, Space and Society Series, Springer International Publishing; 2015 edition, ISBN 978-3-319-09567-7.
  • F. J. Martín-Torres and J. F. Buenestado, ¿Qué sabemos de la vida en el Universo?, Editorial: CSIC y Catarata, ISBN 978-84-8319-840-7, Páginas: 128, 2013
  • Martín-Torres F. J., and A. Delgado-Bonal, A Mathematic Approach to Nitrogen Fixation Through Earth History, chapter of book Nitrogen in Planetary Systems: The Early Evolution of Atmospheres of Terrestrial Planets, ISBN 978-1-4614-5190-7, Springer-Verlag, 2013.
  • Trigo-Rodríguez, J. M. and F. J. Martín-Torres, Implication of Impacts in the Young Earth Sun Paradox and the Evolution of Earth's Atmosphere, chapter of book Nitrogen in Planetary Systems: The Early Evolution of Atmospheres of Terrestrial Planets, ISBN 978-1-4614-5190-7, Springer-Verlag, 2013.
  • Co-author in book as part of the Venus Entry Probe Team, Venus Entry Probe Workshop, Note du Pole de Planetologie, Institut Pierre Simon Laplace des Sciences de l’Environnement Global, ISSN 1768-0042, 2006.

References

[23][24][25][26][27]

  1. ^ "Javier Martin-Torres". nai.nasa.gov. NASA Astrobiology Institute. Archived from the original on 2016-07-16. Retrieved 2018-11-02.
  2. ^ Shekhar, M.; Bhardwaj, A.; Singh, S.; Ranhotra, P. S.; Bhattacharyya, A.; Pal, A. K.; Roy, I.; Martín-Torres, F. J.; Zorzano, M. P. (2017). "Himalayan glaciers experienced significant mass loss during later phases of little ice age". Scientific Reports. 7 (1): 10305. doi:10.1038/s41598-017-09212-2. PMC 5583174. PMID 28871188.
  3. ^ "Javier Martin-Torres, Professor, Chaired Professor, +46 (0)920 497545, 7545, A3432 - Luleå University of Technology". www.ltu.se. Retrieved 2018-11-20.
  4. ^ "Atmospheric Science Group". atmospheres.research.ltu.se. Retrieved 2018-11-20.
  5. ^ "Luleå Tekniska Universitet". Archived from the original on 2018-11-09. Retrieved 2018-11-02.
  6. ^ "CSIC". Archived from the original on 2018-10-02. Retrieved 2018-11-02.
  7. ^ "Personal". www.iact.ugr-csic.es. Retrieved 2018-11-20.
  8. ^ "Instituto Andaluz de Ciencias de la Tierra". Archived from the original on 2018-04-27. Retrieved 2018-11-02.
  9. ^ "People | UK Centre for Astrobiology". www.astrobiology.ac.uk. Retrieved 2018-11-20.
  10. ^ "University of Edinburgh". Archived from the original on 2018-10-02. Retrieved 2018-11-02.
  11. ^ "Pheasant Memorial Laboratory". pml.misasa.okayama-u.ac.jp. Retrieved 2018-11-20.
  12. ^ "University of Okayama". Archived from the original on 2018-09-26. Retrieved 2018-11-02.
  13. ^ "Atmospheric Science Group". atmospheres.research.ltu.se. Retrieved 2018-11-20.
  14. ^ "ExoMars Mission (2020)". exploration.esa.int. Retrieved 2018-11-20.
  15. ^ "ExoMars 2020 surface platform". exploration.esa.int. Retrieved 2018-11-20.
  16. ^ "REMS an instrument for Mars environmental monitoring". cab.inta-csic.es. Retrieved 2018-11-20.
  17. ^ NASA, JPL. "Mars Science Laboratory". mars.jpl.nasa.gov. Retrieved 2018-11-20.
  18. ^ Stern, J. C.; Sutter, B; Freissinet, C (2015). "Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars". Proceedings of the National Academy of Sciences. 112 (14). Navarro-González, R., McKay, C. P., Archer Jr., P. D., Buch, A., Brunner, A. E., Coll, P., Eigenbrode, J. L., Fairen, A. G., Franz, H. B., Glavin, D. P., Kashyap, S., McAdam, A. C., Ming, D. W., Steele, A., Szopa, C., Wray, J. J., Martin-Torres, J., Zorzano, M-P., Conrad, P. G., Mahaffy, P. R., MSL Science Team, 2015: 4245–4250. doi:10.1073/pnas.1420932112. PMC 4394254. PMID 25831544.
  19. ^ Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; Ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; McAdam, A. C.; Ming, D. W.; Navarro-González, R. (2015). "Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars". Journal of Geophysical Research: Planets. 120 (3). C. Freissinet, D. P. Glavin, P. R. Mahaffy, K. E. Miller, J. L. Eigenbrode, R. E. Summons, A. E. Brunner, A. Buch, C. Szopa, P. D. Archer Jr., H. B. Franz, S. K. Atreya, W. B. Brinckerhoff, M. Cabane, P. Coll, P. G. Conrad, D. J. Des Marais, J. P. Dworkin, A. G. Fairén, P. François, J. P. Grotzinger, S. Kashyap, I. L. ten Kate, L. A. Leshin, C. A. Malespin, M. G. Martin, F. J. Martin-Torres, A. C. McAdam, D. W. Ming, R. Navarro-González, A. A. Pavlov, B. D. Prats, S. W. Squyres, A. Steele, J. C. Stern, D. Y. Sumner, B. Sutter, M.-P. Zorzano, and the MSL Science Team, 2015: 495–514. doi:10.1002/2014JE004737. PMC 4672966. PMID 26690960. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  20. ^ Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; Flesch, G. J.; Mischna, M. A.; Meslin, P.-Y.; Farley, K. A.; Conrad, P. G.; Christensen, L. E.; Pavlov, A. A.; Martin-Torres, J.; Zorzano, M.-P.; McConnochie, T. H.; Owen, T.; Eigenbrode, J. L.; Glavin, D. P.; Steele, A.; Malespin, C. A.; Archer, P. D.; Sutter, B.; Coll, P.; Freissinet, C.; McKay, C. P.; Moores, J. E.; Schwenzer, S. P.; Bridges, J. C.; Navarro-Gonzalez, R.; Gellert, R.; Lemmon, M. T.; MSL Science Team (2015). "Mars methane detection and variability at Gale crater" (PDF). Science. 347 (6220). Webster, C.R., Mahaffy, P.R., Atreya, S.K.; Flesch, G.J., Mischna, M.A., Meslin, P.Y.; Farley, K.A., Conrad, P.G., Christensen, L.E ., Pavlov, A.A., Martin-Torres, J. Zorzano, M.P., McConnochie, T.H., Owen, T., Eigenbrode, J.L., Glavin, D.P., Steele, A., Malespin, C.A., Archer, P.D., Sutter, B., Coll, P., Freissinet, C., McKay, C.P., Moores, J.E., Schwenzer, S.P., Bridges, J.C., Navarro Gonzalez, R., Gellert, R., Lemmon, M.T., MSL Sci Team, 2015: 415–417. doi:10.1126/science.1261713. PMID 25515120.
  21. ^ Martin-Torres, J., Zorzano, M-P., Valentin-Serrano, P., Harri, A-M., Genzer, M., Kemppainen, O., Rivera-Valentin, E. G., Jun, I., Wray, J. J., Madsen, M. B., Goetz, W., McEwen, A. S., Hardgrove, C., Renno, N., Chevrier, V. F., Mischna, M. A., Navarro-Gonzalez, R., Martínez-Frías, J., Conrad, P. G., McConnochie, T. H., Cockell, C., Berger, G., Vasavada, A., Sumner, D. Y. & Vaniman, D. T., 2015, Transient liquid water and water activity at Gale crater on Mars, Nature Geoscience, vol. 8, p. 357-361, doi:10.1038/ngeo2412.
  22. ^ Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Rivera-Valentin, Edgard G.; Jun, Insoo; Wray, James (2015-04-13). "Transient liquid water and water activity at Gale crater on Mars". Nature Geoscience. 8 (5): 357–361. doi:10.1038/ngeo2412. ISSN 1752-0894.
  23. ^ "Fall 2009 Faculty News:Kudos to Javier Martin-Torres". lpl.arizona.edu. The University of Arizona.
  24. ^ "News". astrobiology.ac.uk. The University of Edinburgh. Archived from the original on 2017-07-15. Retrieved 2018-11-02.
  25. ^ "Javier Martin-Torres". ltu.se. Lulea University of Technology. Archived from the original on 2018-10-17. Retrieved 2018-10-23.
  26. ^ Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier (2018). "Planetary boundary layer and circulation dynamics at Gale Crater, Mars". Icarus. 302: 537–559. doi:10.1016/j.icarus.2017.11.036.
  27. ^ "NASA finds ancient organic material, mysterious methane on Mars". sciencedaily.com. Science Daily. Archived from the original on 2018-06-12. Retrieved 2018-11-02.