Jump to content

Vector potential

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Physicist137 (talk | contribs) at 04:08, 2 May 2020 (Nonuniqueness: Reverted (a consent function is a particular case of a gradient)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a scalar potential, which is a scalar field whose gradient is a given vector field.

Formally, given a vector field v, a vector potential is a vector field A such that

Consequence

If a vector field v admits a vector potential A, then from the equality

(divergence of the curl is zero) one obtains

which implies that v must be a solenoidal vector field.

Theorem

Let

be a solenoidal vector field which is twice continuously differentiable. Assume that v(x) decreases sufficiently fast as ||x||→∞. Define

Then, A is a vector potential for v, that is,

A generalization of this theorem is the Helmholtz decomposition which states that any vector field can be decomposed as a sum of a solenoidal vector field and an irrotational vector field.

Nonuniqueness

The vector potential admitted by a solenoidal field is not unique. If A is a vector potential for v, then so is

where f is any continuously differentiable scalar function. This follows from the fact that the curl of the gradient is zero.

This nonuniqueness leads to a degree of freedom in the formulation of electrodynamics, or gauge freedom, and requires choosing a gauge.

See also

References

  • Fundamentals of Engineering Electromagnetics by David K. Cheng, Addison-Wesley, 1993.